EE 641 Final Exam Fall 2016

Name: _		
	Instructions	

- This exam contains 4 problems worth a total of 100 points.
- You may not use any notes, textbooks, or calculators.
- Answer questions precisely and completely. Credit will be subtracted for vague answers.

Good luck.

Problem 1. (25pt)

Consider the problem

$$\hat{x} = \arg\min_{x \in \mathbb{R}^{+N}} f(x) ,$$

where $f: \mathbb{R}^N \to \mathbb{R}$ is a convex function. In order to remove the constraint, we may define the proper, closed, convex function

$$g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R}^{+N} \\ \infty & \text{if } x \notin \mathbb{R}^{+N} \end{cases}.$$

Then the minimum is given by the solution to the unconstrained optimization problem

$$\hat{x} = \arg\min_{x \in \mathbb{R}^N} \left\{ f(x) + g(x) \right\} . \tag{1}$$

Using this formulation, do the following.

- a) Use variable splitting to derive a constrained optimization problem that is equivalent to equation (1).
- b) Formulate the augmented Lagrangian for this constrained optimization problem and give the iterative algorithm for solving the augmented Lagrangian problem.
- c) Use the ADMM approach to formulate an iterative algorithm for solving the augmented Lagrangian.
- d) Simplify the expressions for the ADMM updates and give the general simplified ADMM algorithm for implementing positivity constraints in convex optimization problems.

Problem 2. (25pt)

Let X_n be a sequence of i.i.d. random variables for $n = 1, \dots, N$, and let Y_n be a sequence of random variables that are conditionally independent and exponentially distributed with mean μ_i for $i = 0, \dots, M-1$ given the corresponding values of X_n . More specifically, the distributions of X and Y are given by

$$P\{X_n = i\} = \pi_i$$

 $p(y_n|x_n) = \frac{1}{\mu_{x_n}} e^{-y_n/\mu_{x_n}} u(y_n)$

where $i \in \{0, \dots, M-1\}$ and $u(\cdot)$ is the unit step function. Furthermore, let $\theta = [\pi_0, \mu_0, \dots, \pi_{M-1}, \mu_{M-1}]$ be the parameter vector of the distribution.

- a) Derive a closed form expression for the ML estimate of θ given both X and Y (i.e., the complete data).
- b) Find the natural sufficient statistics for the exponential distribution of (X,Y).
- c) Use the results of from class to derive the EM algorithm for computing the ML estimate of θ from Y.

Problem 3. (25pt)

Let X_n be a Markov chain known as as a birth-death process that takes on values in the set $\{0, \dots, M-1\}$. With each new time increment, the value of X_n is either incremented (i.e., birth occurs), decremented (i.e., death occurs), or the state remains unchanged. So for $i = 0, \dots, M-2$, then $P_{i,i+1} = \lambda$ is the birth rate; and for $i = 1, \dots, M-1$, then $P_{i,i-1} = \mu$ is the death rate where $\lambda + \mu < 1$.

- a) Calculate all the values of $P_{i,j}$ for all $i, j \in \{0, \dots, M-1\}$.
- b) Prove or disprove that the Markov chain is stationary, irreducible, and aperiodic.
- c) Prove or disprove that the Markov chain is reversible.
- d) Calculate the density π_i that is the stationary distribution of the Markov chain.

Problem 4. (25pt) Consider a stochastic simulation designed to generate samples from the Gibbs distribution given by

$$p(x) = \frac{1}{z} \exp\left\{-u(x)\right\}$$

using the Hastings-Metropolis algorithm. Also assume that the following proposal distribution is used.

$$q(w|x^k) = \frac{1}{z} \exp\{-u(w)\}$$

Then show that the acceptance probability is 1, and the algorithm converges to the Gibbs distribution in one step.