EE 641 Final Exam Fall 2015

Name:		
	Instructions	,

- This exam contains 4 problems worth a total of 100 points.
- You may not use any notes, textbooks, or calculators.
- Answer questions precisely and completely. Credit will be subtracted for vague answers.

Good luck.

Problem 1. (25pt)

Consider the function

$$f(x) = |x - x_r|^{1.1} ,$$

for $x \in \mathbb{R}$.

- a) Sketch a plot of f(x) when $x_r = 1$.
- b) Sketch a good surrogate function, f(x; x'), for $x_r = 1$ and x' = 2.
- c) Determine a general expression for the surrogate function f(x; x') that works for any value of x_r and x' such that $x_r \neq x'$.
- d) Assuming the objective is to minimize the expression

$$f(x) = \sum_{r \in \partial s} |x - x_r|^{1.1} ,$$

for $x \in \mathbb{R}$, specify an iterative algorithm in terms of the surrogate function f(x; x') that will converge to the global minimum of the function.

Problem 2. (25pt)

Consider the problem

$$\hat{x} = \arg\min_{x \ge 0} f(x) ,$$

where $f: \mathbb{R}^N \to \mathbb{R}$ is a convex function and $x \geq 0$ denotes a positivity constraint on x. In order to remove the constraint, we may define the proper, closed, convex function

$$g(x) = \begin{cases} 0 & \text{if } x \ge 0 \\ \infty & \text{if } x < 0 \end{cases}.$$

Then the minimum is given by the solution to the unconstrained optimization problem

$$\hat{x} = \arg\min_{x \in \mathbb{R}^N} \left\{ f(x) + g(x) \right\} . \tag{1}$$

Using this formulation, do the following.

- a) Use variable splitting to derive a constrained optimization problem that is equivalent to equation (1).
- b) Formulate the augmented Lagrangian for this constrained optimization problem, and give the iterative algorithm for solving the augmented Lagrangian problem.
- c) Use the ADMM approach to formulate an iterative algorithm for solving the augmented Lagrangian.
- d) Simplify the expressions for the ADMM updates and give the general simplified ADMM algorithm for implementing positivity constraints in convex optimization problems.

Problem 3. (25pt)

Let X_n be N i.i.d. random variables with $P\{X_n = i\} = \pi_i$ for $i = 0, \dots, M-1$. Also, assume that Y_n are conditionally independent Gaussian random variables given X_n and that the conditional distribution of Y_n given X_n is distributed as $N(\mu_{x_n}, \gamma_{x_n})$. Derive an EM algorithm for estimating the parameters $\{\pi_i, \mu_i, \gamma_i\}_{i=0}^{M-1}$ from the observations $\{Y_n\}_{n=1}^N$.

Problem 4. (25pt)

Consider the homogeneous Markov chain $\{X_n\}_{n=0}^{\infty}$ with parameters

$$\tau_j = P\{X_0 = j\}$$

$$P_{i,j} = P\{X_n = j | X_{n-1} = i\}$$

where $i, j \in \{0, \dots, M-1\}$. Furthermore, assume that the transition parameters are given by

$$P_{i,j} = \begin{cases} 1/2 & \text{if } j = (i+1) \mod M \\ 1/2 & \text{if } j = i \\ 0 & \text{otherwise} \end{cases}$$

- a) Write out the transition matrix P for the special case of M=4. (But solve the remaining problems for any M.)
- b) Is the Markov chain irreducible? Prove or give a counter example.
- c) Is the Markov chain periodic? Prove or give a counter example.
- d) Is the Markov chain ergodic? Prove or give a counter example.
- e) Determine the value of the following matrix

$$\lim_{n\to\infty}P^n$$

f) Is the Markov chain reversible? Prove or give a counter example.

Name:		
-------	--	--