EE 641 Midterm Exam October 12, Fall 2012

Name:			
		Inc	tructions

The following is an in-class closed-book exam.

- $\bullet\,$ This exam contains 3 problems worth a total of 108 points.
- You may not use any notes, textbooks, or calculators.

Good luck.

Problem 1. (36pt)

Let $Y \in \mathbb{R}^M$ and $X \in \mathbb{R}^N$ be zero-mean jointly Gaussian random vectors. Then define the following notation for this problem. Let p(y,x) and p(y|x) be the joint and conditional density of Y given X. Let B be the joint positive-definite precision matrix (i.e., inverse covariance matrix) given by $B^{-1} = \mathbb{E}[ZZ^t]$ where $Z = \begin{bmatrix} Y \\ X \end{bmatrix}$. Furthermore, let C, D, and E be the matrix blocks that form B, so that

$$B = \left[\begin{array}{cc} C & D \\ D^t & E \end{array} \right] .$$

where $C \in \mathbb{R}^{M \times M}$, $D \in \mathbb{R}^{M \times N}$, and $E \in \mathbb{R}^{N \times N}$. Finally, define the matrix A so that $AX = \mathbb{E}[Y|X]$ and the matrix Λ so that $\Lambda^{-1} = \mathbb{E}[(Y - AX)(Y - AX)^t|X]$.

- a) Write out an expression for p(y, x) in terms of B.
- b) Write out an expression for p(y|x) in terms of A and Λ .
- c) Derive an expression for Λ the in terms of C, D, and E.
- d) Derive an expression for A the in terms of C, D, and E.

Problem 2. (36pt)

Let X_n be a 1-D zero-mean Gaussian AR process with MMSE causal prediction filter given by $h_n = \rho \delta_{n-1}$ and causal prediction variance σ_C^2 .

- a) Calculate, $S_X(\omega)$, the power spectral density of the random process.
- b) Calculate, $R_X(n)$, the time autocorrelation of the random process.
- c) Calculate (σ_{NC}^2, g_n) the noncausal prediction variance and the noncausal prediction filter for the equivalent GMRF. Hint: Remember that

$$\sigma_{NC}^2(\delta_n - h_n) * (\delta_n - h_{-n}) = \sigma_C^2(\delta_n - g_n) .$$

Problem 3. (36pt)

Consider the optimization problem

$$\hat{x} = \arg\min_{x \in \mathbb{R}^N} \left\{ ||y - Ax||_{\Lambda}^2 + x^t Bx \right\}$$

where A is a nonsingular $N \times N$ matrix, B is a positive-definite $N \times N$ matrix, and Λ is a diagonal and positive-definite matrix.

- a) Derive a closed form expression for the solution.
- b) Calculate an expression for the gradient descent update using step size $\mu \geq 0$.
- c) Calculate an expression for the coordinate descent update.