EE 641 Final Exam Fall 2012

Name:	
	Instructions

- This exam contains 4 problems worth a total of 100 points.
- You may not use any notes, textbooks, or calculators.
- Answer questions precisely and completely. Credit will be subtracted for vague answers.

Good luck.

Problem 1. (25pt)

Consider the function

$$f(x) = |x - x_r|^{1.1} ,$$

for $x \in \Re$.

- a) Sketch a plot of f(x) when $x_r = 1$.
- b) Sketch a good substitute function, f(x; x'), for $x_r = 1$ and x' = 2.
- c) Determine a general expression for the substitute function f(x; x') that works for any value of x_r and x'.
- d) Assuming the objective is to minimize the expression

$$f(x) = \sum_{r=1}^{P} |x - x_r|^{1.1} ,$$

for $x \in \Re$, specify an iterative algorithm in terms of the substitute function f(x; x') for the minimization of the function f(x).

Problem 2.(25pt)

Let X_n be a sequence of i.i.d. random variables for $n = 1, \dots, N$, and let Y_n be a sequence of random variables that are conditionally independent and exponentially distributed with mean μ_i for $i = 0, \dots, M-1$ given the corresponding values of X_n . More specifically, the distributions of X and Y are given by

$$P\{X_n = i\} = \pi_i$$

 $p(y_n|x_n) = \frac{1}{\mu_{x_n}} e^{-y_n/\mu_{x_n}} u(y_n)$

where $i \in \{0, \dots, M-1\}$ and $u(\cdot)$ is the unit step function. Furthermore, let $\theta = [\pi_0, \mu_0, \dots, \pi_{M-1}, \mu_{M-1}]$ be the parameter vector of the distribution.

- a) Derive a closed form expression for the ML estimate of θ given both X and Y (i.e., the complete data).
- b) Find the natural sufficient statistics for the exponential distribution of (X,Y).
- c) Specify the EM algorithm for computing the ML estimate of θ from Y.

Problem 3.(25pt)

Consider a Markov chain, $\{X_n\}_{n=0}^{\infty}$, with the transition probabilities,

$$P_{i,j} = \begin{cases} \lambda & \text{if } j = i+1 \\ \mu & \text{if } j = i-1 \text{ and } i > 0 \\ 1 - \lambda - \mu & \text{if } j = i \text{ and } i > 0 \\ 1 - \lambda & \text{if } j = i \text{ and } i = 0 \\ 0 & \text{otherwise} \end{cases},$$

where $\rho = \frac{\lambda}{\mu}$ is in the range $0 < \rho < 1$.

- a) Find a stationary distribution, π_k , and prove that it solves the full balance equations for this Markov chain.
- b) Show that the Markov chain is not periodic and is irreducible.
- c) Is the Markov chain ergodic for $\rho \in (0,1)$? Is it ergodic for $\rho > 1$? Explain your reasoning.

Problem 4.(25pt)

- a) Prove that a 1-D Markov chain of order P=1 is also an MRF of order P=1.
- b) Prove that a 1-D MRF of order P=1 is also a Markov chain of order P=1.