EE 641 Midterm Exam November 22, Fall 2010

Name:		-
	Inc	tructions

The following is an in-class closed-book exam.

- This exam contains 3 problems worth a total of 108 points.
- You may not use any notes, textbooks, or calculators.

Good luck.

Problem 1. (36pt)

Consider the p dimensional random vector, X, with distribution

$$p(x) = \frac{1}{z} \exp\left\{-\frac{1}{2}x^t B x\right\}$$

- a) Give an expression for the normalizing constant z.
- b) Assuming that X is a Markov random field with neighborhood system ∂s for $s \in \{1, \dots, p\}$, then specify which values of B must be zero.
- c) Compute an expression for the conditional density $p(x_s|x_r \text{ for } r \neq s)$.
- d) Compute an expression for the marginal density $p(x_s)$.

Problem 2. (36pt)

Consider the function

$$f(x) = |x - x_r|^{1.1} ,$$

for $x \in \Re$.

- a) Sketch a plot of f(x) when $x_r = 1$.
- b) Sketch a good substitute function, f(x; x'), for $x_r = 1$ and x' = 2.
- c) Determine a general expression for the substitute function f(x; x') that works for any value of x_r and x'.
- d) Assuming the objective is to minimize the expression

$$f(x) = \sum_{r \in \partial s} |x - x_r|^{1.1} ,$$

for $x \in \Re$, specify an iterative algorithm in terms of the substitute function f(x; x') that will converge to the global minimum of the function. (You can write your solution in terms of the function f(x; x').)

Problem 3. (36pt)

Let $\{X_n\}_{n=1}^N$ be a i.i.d. random varibles with distribution

$$P\{X_n = m\} = \pi_m ,$$

where $\sum_{m=0}^{M-1} \pi_m = 1$. Also, let Y_n be conditionally independent random variables given X_n , with exponential conditional distribution

$$p(y_n|x_n = m) = \frac{1}{\mu_m} \exp\left\{-\frac{y_n}{\mu_m}\right\} u(y_n) ,$$

where $u(y_n)$ is 1 for $y_n \ge 0$ and 0 otherwise.

- a) Write out the density function for the vector Y.
- b) What are the natural sufficient statistics for the complete data (X,Y)?
- c) Give an expression for the ML estimate of the parameter $\theta = (\pi_0, \mu_0, \dots, \pi_{M-1}, \mu_{M-1})$ given the complete data (X, Y).
- d) Give the EM update equations for computing the ML estimate of the parameter $\theta = (\pi_0, \mu_0, \dots, \pi_{M-1}, \mu_{M-1})$ given the incomplete data Y.