Simulation

- Topics to be covered:
 - Gibbs sampler
 - Metropolis sampler
 - Hastings-Metropolis sampler

Generating Samples from a Gibbs Distribution

• How do we generate a random variable X with a Gibbs distribution?

$$p(x) = \frac{1}{Z} \exp\left\{-U(x)\right\}$$

- Generally, this problem is difficult.
- Markov Chains can be generated sequentially
- Non-causal structure of MRF's makes simulation difficult.

Gibbs Sampler[4]

• Replace each point with a sample from its conditional distribution

$$p(x_s|x_i^k \ i \neq s) = p(x_s|x_{\partial s})$$

- Scan through all the points in the image.
- Advantage
 - Eliminates need for rejections \Rightarrow faster convergence
- Disadvantage
 - Generating samples from $p(x_s|x_{\partial s})$ can be difficult.

Gibbs Sampler Algorithm

Gibbs Sampler Algorithm:

- 1. Set N = # of pixels
- 2. Order the N pixels as $N = s(0), \dots, s(N-1)$
- 3. Repeat for k = 0 to ∞
 - (a) Form $X^{(k+1)}$ from $X^{(k)}$ via

$$X_r^{(k+1)} = \begin{cases} W & \text{if } r = s(k) \\ X_r^{(k)} & \text{if } r \neq s(k) \end{cases}$$

where $W \sim p\left(x_{s(k)} \middle| X_{\partial s(k)}^{(k)}\right)$

The Metropolis Sampler[9, 8]

• How do we generate a sample from a Gibbs distribution?

$$p(x) = \frac{1}{Z} \exp\left\{-U(x)\right\}$$

• Start with the sample x^k , and generate a new sample W with probability $q(w|x^k)$.

Note: $q(w|x^k)$ must be symmetric.

$$q(w|x^k) = q(x^k|w)$$

• Compute $\Delta E(W) = U(W) - U(x^k)$, then do the following:

If
$$\Delta E(W) < 0$$

- Accept: $X^{k+1} = W$

If
$$\Delta E(W) \ge 0$$

- Accept: $X^{k+1} = W$ with probability $\exp\{-\Delta E(W)\}$
- Reject: $X^{k+1} = x^k$ with probability $1 \exp\{-\Delta E(W)\}$

Ergodic Behavior of Metropolis Sampler

- The sequence of random fields, X^k , form a Markov chain.
- Let $p(x^{k+1}|x^k)$ be the transition probabilities of the Markov chain.
- Then X^k is reversible

$$p(x^{k+1}|x^k)\exp\{-U(x^k)\} = \exp\{-U(x^{k+1})\}p(x^k|x^{k+1})$$

• Therefore, if the Markov chain is irreducible, then

$$\lim_{k \to \infty} P\{X^k = x\} = \frac{1}{Z} \exp\{-U(x)\}\$$

• If every state can be reached, then as $k \to \infty$, X^k will be a sample from the Gibbs distribution.

Example Metropolis Sampler for Ising Model

	0	
1	X _S	0
	0	

- Assume $x_s^k = 0$.
- Generate a binary R.V., W, such that $P\{W=0\}=0.5$.

$$\Delta E(W) = U(W) - U(x_s^k)$$

$$= \begin{cases} 0 & \text{if } W = 0 \\ 2\beta & \text{if } W = 1 \end{cases}$$

If $\Delta E(W) < 0$

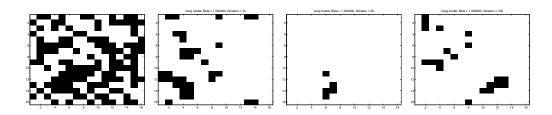
 $-\operatorname{Accept} X_s^{k+1} = W$

If $\Delta E(W) \ge 0$

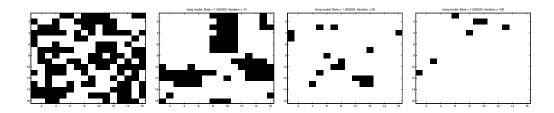
- Accept: $X_s^{k+1} = W$ with probability $\exp\{-\Delta E(W)\}$
- Reject: $X_s^{k+1} = x_s^k$ with probability $1 \exp\{-\Delta E(W)\}$
- Repeat this procedure for each pixel.
- Warning: for $\beta > \beta_c$ convergence can be extremely slow!

Example Simulation for Ising Model($\beta = 1.0$)

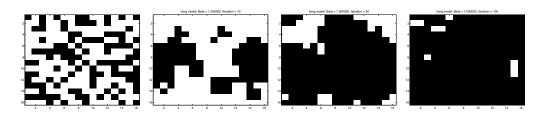
• Test 1



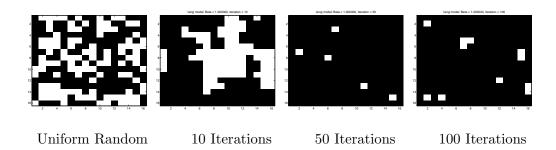
• Test 2



• Test 3



• Test 4



Advantages and Disadvantages of Metropolis Sampler

Advantages

- Can be implemented whenever ΔE is easy to compute.
- Has guaranteed geometric convergence.

• Disadvantages

- Can be slow if there are many rejections.
- Is constrained to use a symmetric transition function $q(x^{k+1}|x^k)$.

Hastings-Metropolis Sampler[7, 10]

- Hastings and Peskun generalized the Metropolis sampler for transition functions $q(w|x^k)$ which are not symmetric.
- The acceptance probability is then

$$\alpha(x_s^k, w) = \min\left\{1, \frac{q(x^k|w)}{q(w|x^k)} \exp\{-\Delta E(w)\}\right\}$$

• Special cases

$$q(w|x^k) = q(x^k|z) \Rightarrow \text{conventional Metropolis}$$

 $q(w_s|x^k) = p(x_s^k|x_{\partial s}^k)|_{x_s^k = w_s} \Rightarrow \text{Gibbs sampler}$

- Advantage
 - Transition function may be chosen to minimize rejections[6]

Parameter Estimation for Discrete State MRF's

- Topics to be covered:
 - Why is it difficult?
 - Coding/maximum pseudolikehood
 - Least squares

Why is Parameter Estimation Difficult?

- Consider the ML estimate of β for an Ising model.
- Remember that

$$t_1(x) = (\# \text{ horz. and vert. neighbors of different value.})$$

• Then the ML estimate of β is

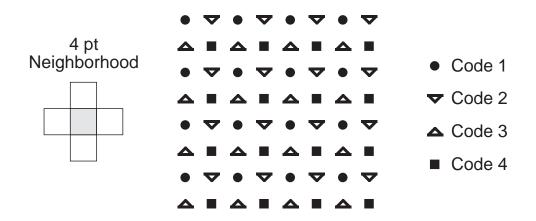
$$\hat{\beta} = \arg \max_{\beta} \left\{ \frac{1}{Z(\beta)} \exp \left\{ -\beta t_1(x) \right\} \right\}$$
$$= \arg \max_{\beta} \left\{ -\beta t_1(x) - \log Z(\beta) \right\}$$

• However, $\log Z(\beta)$ has an intractable form

$$\log Z(\beta) = \log \sum_{x} \exp \left\{-\beta t_1(x)\right\}$$

• Partition function can not be computed.

Coding Method/Maximum Pseudolikelihood[1, 2]



- Assume a 4 point neighborhood
- Separate points into four groups or codes.
- Group (code) contains points which are conditionally independent given the other groups (codes).

$$\hat{\beta} = \arg\max_{\beta} \prod_{s \in Code_k} p(x_s | x_{\partial s})$$

• This is tractable (but not necessarily easy) to compute

Least Squares Parameter Estimation[3]

• It can be shown that for an Ising model

$$\log \frac{P\{X_s = 1 | x_{\partial s}\}}{P\{X_s = 0 | x_{\partial s}\}} = -\beta \left(V_1(1 | x_{\partial s}) - V_1(0 | x_{\partial s})\right)$$

- For each unique set of neighboring pixel values, $x_{\partial s}$, we may compute
 - The observed rate of $\log \frac{P\{X_s=1|x_{\partial s}\}}{P\{X_s=0|x_{\partial s}\}}$
 - The value of $(V_1(1|x_{\partial s}) V_1(0|x_{\partial s}))$
 - This produces a set of over-determined linear equations which can be solved for β .
- This least squares method is easily implemented.

Theoretical Results in Parameter Estimation for MRF's

- Inconsistency of ML estimate for Ising model[11, 12]
 - Caused by critical temperature behavior.
 - Single sample of Ising model cannot distinguish between high β with mean 1/2, and low β with large mean.
 - Not identifiable
- Consistency of maximum pseudolikelihood estimate[5]
 - Requires an identifiable parameterization.

References

- [1] J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields. *Biometrica*, 64(3):616–618, 1977.
- [2] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society B, 48(3):259–302, 1986.
- [3] H. Derin and H. Elliott. Modeling and segmentation of noisy and textured images using Gibbs random fields. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, PAMI-9(1):39–55, January 1987.
- [4] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, PAMI-6:721–741, November 1984.
- [5] S. Geman and C. Graffigne. Markov random field image models and their applications to computer vision. In *Proc. of the Intl Congress of Mathematicians*, pages 1496–1517, Berkeley, CA, 1986.
- [6] P. J. Green and X. liang Han. Metropolis methods, Gaussian proposals and antithetic variables. In P. Barone, A. Frigessi, and M. Piccioni, editors, *Stochastic Models, Statistical methods, and Algorithms in Image Analysis*, pages 142–164. Springer-Verlag, Berlin, 1992.
- [7] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. *Biometrika*, 57(1):97–109, 1970.
- [8] R. Kindermann and J. Snell. *Markov Random Fields and their Applications*. American Mathematical Society, Providence, 1980.
- [9] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state calculations by fast computing machines. *J. Chem. Phys.*, 21:1087–1091, 1953.
- [10] P. H. Peskun. Optimum Monte-Carlo sampling using Markov chains. *Biometrika*, 60(3):607–612, 1973.
- [11] D. Pickard. Asymptotic inference for an Ising lattice iii. non-zero field and ferromagnetic states. J. Appl. Prob., 16:12–24, 1979.
- [12] D. Pickard. Inference for discrete Markov fields: The simplest nontrivial case. *Journal of the American Statistical Association*, 82:90–96, March 1987.