Application of Inverse Methods to Tomography

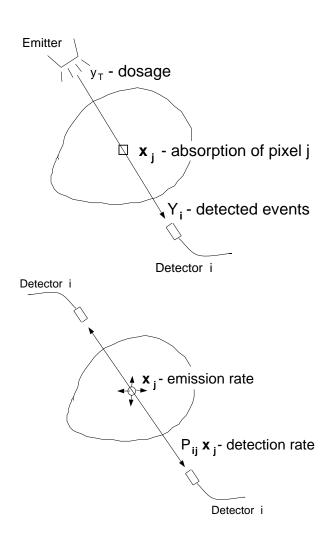
- Topics to be covered:
 - Tomographic system and data models
 - MAP Optimization
 - Parameter estimation

The Tomography Problem

• Recover image cross-section from integral projections

• Transmission problem

• Emission problem



Statistical Data Model[3]

- Notation
 - -y vector of photon counts
 - -x vector of image pixels
 - -P projection matrix
 - $-P_{j,*}$ j^{th} row of projection matrix
- Emission formulation

$$\log p(y|x) = \sum_{i=1}^{M} (-P_{i*}x + y_i \log\{P_{i*}x\} - \log(y_i!))$$

• Transmission formulation

$$\log p(y|x) = \sum_{i=1}^{M} \left(-y_T e^{-P_{i*}x} + y_i (\log y_T - P_{i*}x) - \log(y_i!) \right)$$

• Common form

$$\log p(y|x) = -\sum_{i=1}^{M} f_i(P_{i*}x)$$

- $-f_i(\cdot)$ is a convex function
- Not a hard problem!

Maximum A Posteriori Estimation (MAP)

• MAP estimate incorporates prior knowledge about image

$$\hat{x} = \arg \max_{x} p(x|y)$$

$$= \arg \max_{x>0} \left\{ -\sum_{i=1}^{M} f_i(P_{i*}x) - \sum_{k< j} b_{k,j} \rho(x_k - x_j) \right\}$$

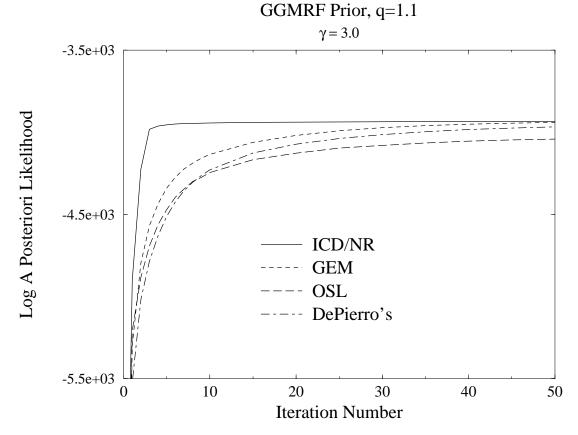
- Can be solved using direct optimization
- Incorporates positivity constraint

MAP Optimization Strategies

- Expectation maximization (EM) based optimization strategies
 - ML reconstruction[12, 10]
 - MAP reconstruction[8, 7, 9]
 - Slow convergence; Similar to gradient search.
 - Accelerated EM approach[6]
- Direct optimization
 - Preconditioned gradient descent with soft positivity constraint[5]
 - ICM iterations (also known as ICD and Gauss-Seidel)[3]

Convergence of ICM Iterations: MAP with Generalized Gaussian Prior q = 1.1

• ICM also known as iterative coordinate descent (ICD) and Gauss-Seidel



• Convergence of MAP estimates using ICD/Newton-Raphson updates, Green's (OSL), and Hebert/Leahy's GEM, and De Pierro's method, and a generalized Gaussian prior model with q=1.1 and $\gamma=3.0$.

Estimation of σ from Tomographic Data

• Assume a GGMRF prior distribution of the form

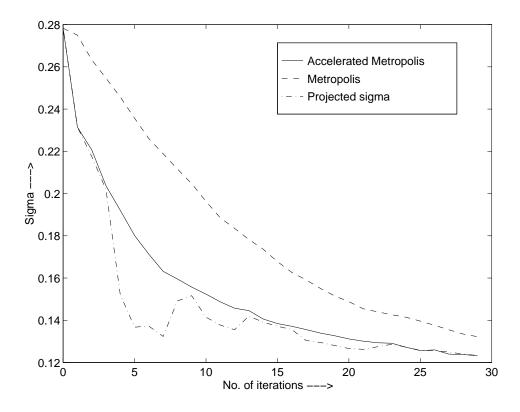
$$p(x) = \frac{1}{\sigma^N Z(1)} \exp\left\{\frac{1}{p\sigma^p} U(x)\right\}$$

- \bullet Problem: We don't know X!
- EM formulation for incomplete data problem

$$\begin{split} \sigma^{(k+1)} &= \arg\max_{\sigma} E\left\{\log p(X|\sigma)|Y=y,\sigma^{(k)}\right\} \\ &= \left(E\left\{\frac{1}{N}U(X)|Y=y,\sigma^{(k)}\right\}\right)^{1/p} \end{split}$$

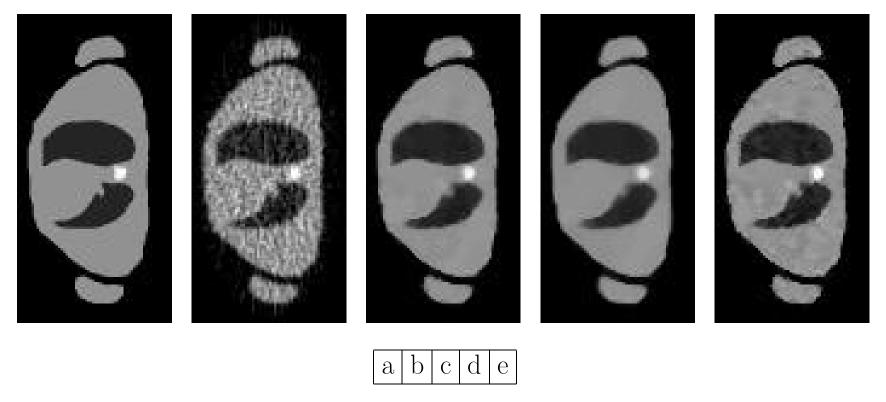
- Iterations converge toward the ML estimate.
- Expectations may be computed using stochastic simulation.

Example of Estimation of σ from Tomographic Data



• The above plot shows the EM updates for σ for the emission phantom modeled by a GGMRF prior (p=1.1) using conventional Metropolis (CM) method, accelerated Metropolis (AM) and the extrapolation method. The parameter s denotes the standard deviation of the symmetric transition distribution for the CM method.

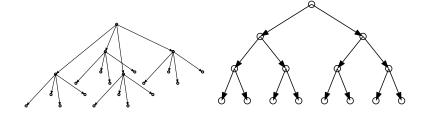
Example of Tomographic Reconstructions



- (a) Original transmission phantom and (b) CBP reconstruction. Reconstructed transmission phantom using GGMRF prior with p = 1.1 The scale parameter σ is (c) $\hat{\sigma}_{ML} \approx \hat{\sigma}_{CBP}$, (d) $\frac{1}{2}\hat{\sigma}_{ML}$, and (e) $2\hat{\sigma}_{ML}$
- Phantom courtesy of J. Fessler, University of Michigan

Multiscale Stochastic Models

• Generate a Markov chain in scale



- Some references
 - Continuous models[2, 1, 11]
 - Discrete models[4, 11]
- Advantages:
 - Does not require a causal ordering of image pixels
 - Computational advantages of Markov chain versus MRF
 - Allows joint and marginal probabilities to be computed using forward/backward algorithm of HMM's.

References

- [1] M. Basseville, A. Benveniste, K. C. Chou, S. A. Golden, R. Nikoukhah, and A. S. Willsky. Modeling and estimation of multiresolution stochastic processes. *IEEE Trans. on Information Theory*, 38(2):766–784, March 1992.
- [2] A. Benveniste, R. Nikoukhah, and A. Willsky. Multiscale system theory. In *Proceedings of the 29th Conference on Decision and Control*, volume 4, pages 2484–2489, Honolulu, Hawaii, December 5-7 1990.
- [3] C. A. Bouman and K. Sauer. A unified approach to statistical tomography using coordinate descent optimization. *IEEE Trans. on Image Processing*, 5(3):480–492, March 1996.
- [4] C. A. Bouman and M. Shapiro. A multiscale random field model for Bayesian image segmentation. *IEEE Trans. on Image Processing*, 3(2):162–177, March 1994.
- [5] E. Ü. Mumcuoğlu, R. Leahy, S. R. Cherry, and Z. Zhou. Fast gradient-based methods for Bayesian reconstruction of transmission and emission pet images. *IEEE Trans. on Medical Imaging*, 13(4):687–701, December 1994.
- [6] J. Fessler and A. Hero. Space-alternating generalized expectation-maximization algorithms. *IEEE Trans. on Acoustics Speech and Signal Processing*, 42(10):2664–2677, October 1994.
- [7] P. J. Green. Bayesian reconstruction from emission tomography data using a modified EM algorithm. *IEEE Trans. on Medical Imaging*, 9(1):84–93, March 1990.
- [8] T. Hebert and R. Leahy. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. *IEEE Trans. on Medical Imaging*, 8(2):194–202, June 1989.
- [9] G. T. Herman, A. R. De Pierro, and N. Gai. On methods for maximum a posteriori image reconstruction with normal prior. *J. Visual Comm. Image Rep.*, 3(4):316–324, December 1992.
- [10] K. Lange. Convergence of EM image reconstruction algorithms with Gibbs smoothing. *IEEE Trans. on Medical Imaging*, 9(4):439–446, December 1990.
- [11] M. R. Luettgen, W. C. Karl, and A. S. Willsky. Efficient multiscale regularization with applications to the computation of optical flow. *IEEE Trans. on Image Processing*, 3(1):41–64, January 1994.
- [12] L. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomography. *IEEE Trans. on Medical Imaging*, MI-1(2):113–122, October 1982.