Markov Random Fields

- Noncausal model
- Advantages of MRF's
 - Isotropic behavior
 - Only local dependencies
- Disadvantages of MRF's
 - Computing probability is difficult
 - Parameter estimation is difficult
- Key theoretical result: Hammersley-Clifford theorem

Definition of Neighborhood System

• Define

- S set of lattice points
- s a lattice point, $s \in S$
- X_s the value of X at s
- $\partial s \subset S$ the neighboring points of s
 - A neighborhood system ∂s must be symmetric

$$r \in \partial s \Rightarrow s \in \partial r$$
 also $s \notin \partial s$

• Example of 8 point neighborhood

X _(0,0)	<i>X</i> _(0,1)	X _(0,2)	X _(0,3)	X _(0,4)
<i>X</i> _(1,0)	<i>X</i> _(1,1)	<i>X</i> _(1,2)	<i>X</i> _(1,3)	<i>X</i> _(1,4)
X _(2,0)	X _(2,1)	X _(2,2)	X _(2,3)	X _(2,4)
X _(3,0)	X _(3,1)	X _(3,2)	X _(3,3)	X _(3,4)
X _(4,0)	<i>X</i> _(4,1)	X _(4,2)	X _(4,3)	X _(4,4)

Neighbors of $X_{(2,2)}$

Markov Random Field

• Definition: A random object X on the lattice S with neighborhood system ∂s is said to be a Markov random field if for all $s \in S$

$$p(x_s|x_r \text{ for } r \neq s) = p(x_s|x_{\partial s})$$

• Problem: How do we write down the distribution for an MRF? Unfortunately

$$p(x) \neq \prod_{s \in S} p(x_s | x_r \text{ for } r \neq s)$$

Definition of Clique

• A clique is a set of points, c, which are all neighbors of each other

 $\forall s,r \in c, \, r \in \partial s$

• 8 point neighborhood system

					_
X _(0,0)	X _(0,1)	<i>X</i> _(0,2)	X _(0,3)	X _(0,4)	
X _(1,0)	<i>X</i> _(1,1)	X _(1,2)	X _(1,3)	X _(1,4)	
X _(2,0)	X _(2,1)	X _(2,2)	X _(2,3)	X _(2,4)	Neighbors of $X_{(2)}$
X _(3,0)	X _(3,1)	X _(3,2)	X _(3,3)	X _(3,4)	
X _(4,0)	<i>X</i> _(4,1)	X _(4,2)	X _(4,3)	X _(4,4)	

• Example of cliques for 8 point neighborhood

1-point clique	
2-point cliques	
3-point cliques	
4-point cliques	
Not a clique	

Gibbs Distribution

 x_c - The value of X at the points in clique c. $V_c(x_c)$ - A potential function is any function of x_c .

• A (discrete) density is a Gibbs distribution if

$$p(x) = \frac{1}{Z} \exp\left\{-\sum_{c \in \mathcal{C}} V_c(x_c)\right\}$$

 \mathcal{C} is the set of all cliques

Z is the normalizing constant for the density.

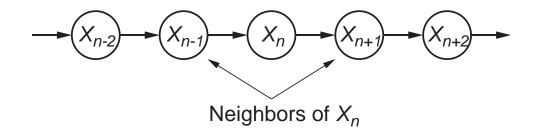
- Z is known as the **partition function**.
- $U(x) = \sum_{c \in \mathcal{C}} V_c(x_c)$ is known as the **energy function**.

Hammersley-Clifford Theorem[1]

$$\begin{pmatrix} X \text{ is a Markov random field} \\ \& \\ \forall x, \ P\{X=x\} > 0 \end{pmatrix} \iff \begin{pmatrix} P\{X=x\} \text{ has the form} \\ \text{of a Gibbs distribution} \end{pmatrix}$$

- Gives you a method for writing the density for a MRF
- Does not give the value of Z, the partition function.
- Positivity, $P\{X = x\} > 0$, is a technical condition which we will generally assume.

Markov Chains are MRF's



- Neighbors of n are $\partial n = \{n 1, n + 1\}$
- Cliques have the form $c = \{n 1, n\}$
- Density has the form

$$p(x) = p(x_0) \prod_{n=1}^{N} p(x_n | x_{n-1}) = p(x_0) \exp\left\{\sum_{n=1}^{N} \log p(x_n | x_{n-1})\right\}$$

• The potential functions have the form

$$V(x_n, x_{n-1}) = -\log p(x_n | x_{n-1})$$

1-D MRF's are Markov Chains

- Let X_n be a 1-D MRF with $\partial n = \{n 1, n + 1\}$
- The discrete density has the form of a Gibbs distribution

$$p(x) = p(x_0) \exp\left\{-\sum_{n=1}^{N} V(x_n, x_{n-1})\right\}$$

- It may be shown that this is a Markov Chain.
- Transition probabilities may be difficult to compute.

The Ising Model

- First proposed to model 2-D magnetic structures.
- See the work of Peierls for an early treatment [7, 6].
- Kindermann and Snell have a very clear tutorial treatment in [4].
- Lattice geometry
 - -S is a rectangular lattice of N pixels.
 - 4-point neighborhood system with cliques $c \in \mathcal{C}$.
 - Assume circular boundary conditions for now.
- Lattice energy
 - Each pixel $X_s \in \{-1, +1\}$ corresponding to north and south poles.
 - Potential of clique $\{r, s\} \in \mathcal{C}$ is $-\frac{J}{2}X_rX_s$.
 - Total energy is

$$u(x) = -\frac{J}{2} \sum_{\{r,s\} \in \mathcal{C}} X_r X_s \; .$$

Physical Basis of Gibbs Distribution

- What is the equilibrium distribution $p_e(x)$?
- Expected energy is

$$\mathcal{E}\{p_e\} = \sum_x p_e(x) u(x)$$

• Entropy is

$$\mathcal{H}\{p_e\} = \sum_x -p_e(x) \log p_e(x)$$

- First Law of Thermodynamics: Expected energy must be constant.
- Second Law of Thermodynamics: Entropy must be maximized.

$$p_e(x) = \arg \max_{p_e: \mathcal{E}\{p_e\} = \text{const}} \mathcal{H}\{p_e\}$$

• Solution is the Gibbs distribution!

$$p(x) = \frac{1}{z} \exp\left\{-\frac{1}{kT}u(x)\right\}$$

- -T is tempurature
- -k is Boltzmann's constant

Distribution for Ising Model

• Equalibrium distribution for Ising model is

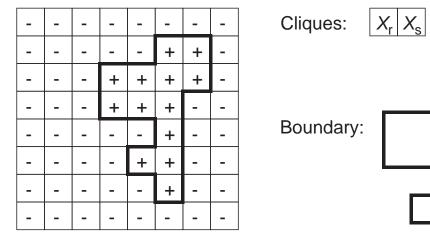
$$p(x) = \frac{1}{z} \exp\left\{\frac{J}{2kT} \sum_{\{r,s\} \in \mathcal{C}} X_r X_s\right\}$$
$$= \frac{1}{z} \exp\left\{\frac{J}{kT} \sum_{\{r,s\} \in \mathcal{C}} \left(\frac{1}{2} - \delta(X_r \neq X_s)\right)\right\}$$
$$= \frac{1}{z'} \exp\left\{-\beta \sum_{\{r,s\} \in \mathcal{C}} \delta(X_r \neq X_s)\right\}$$

where $\beta = \frac{J}{kT}$ is a model parameter and $\delta(X_r \neq X_s)$ is an indicator function for the event $X_r \neq X_s$.

 \bullet By the Hammersly-Clifford Theorem, X is a MRF with a 4-point neighborhood.

Interpretation of Ising Model

 $\frac{X_{\rm r}}{X_{\rm s}}$



• Potential functions are given by

$$V(x_r, x_s) = \beta \delta(x_r \neq x_s)$$

• Energy function is given by

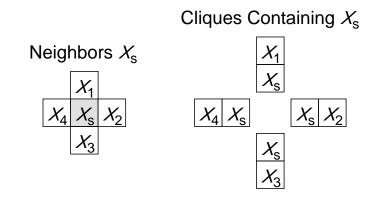
$$\sum_{c \in \mathcal{C}} V_c(x_c) = \beta(\text{Boundary length})$$

• Interpretation of probability density

$$p(x) = \frac{1}{z} \exp\{-\beta(\text{Boundary length})\}$$

• Longer boundaries \Rightarrow less probable

Conditional Probability of a Pixel in Ising Model



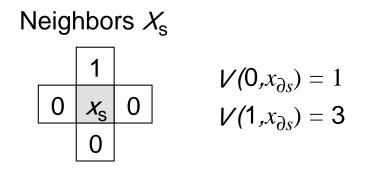
• The probability of a pixel given all other pixels is

$$p(x_s|x_{i\neq s}) = \frac{\frac{1}{Z} \exp\left\{-\sum_{c \in \mathcal{C}} V_c(x_c)\right\}}{\sum_{x_s=0}^{M-1} \frac{1}{Z} \exp\left\{-\sum_{c \in \mathcal{C}} V_c(x_c)\right\}}$$

• Notice: Any term $V_c(x_c)$ which does not include x_s cancels.

$$p(x_s|x_{i\neq s}) = \frac{\exp\left\{-\beta \sum_{i=1}^{4} \delta(x_s \neq x_i)\right\}}{\sum_{x_s=0}^{M-1} \exp\left\{-\beta \sum_{i=1}^{4} \delta(x_s \neq x_i)\right\}}$$

Conditional Probability of a Pixel in Ising Model (Continued)



• Define

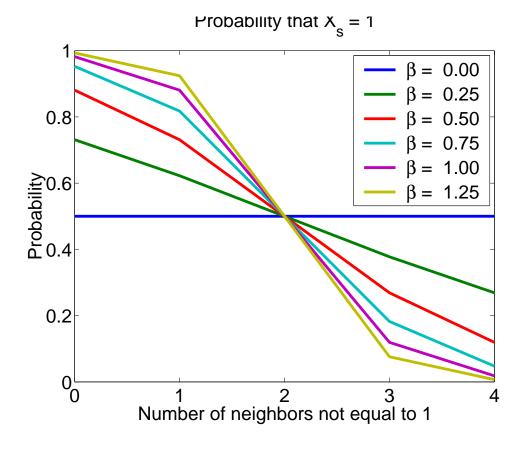
 $v(x_s, \partial x_s) \stackrel{\triangle}{=} \# \text{ of horzontal/vertical neighbors} \neq x_s$

• Then

$$p(x_s|x_{i\neq s}) = \frac{\exp\left\{-\beta v(x_s, \partial x_s)\right\}}{\sum\limits_{x'_s = \{-1, +1\}} \exp\left\{-\beta v(x'_s, \partial x_s)\right\}}$$

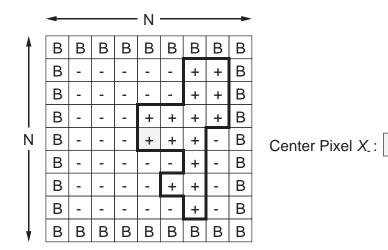
• When $\beta > 0$, X_s is most likely to be the majority neighboring class.

Conditional Distribution Plots



• $P\{X_s = 1 | X_r \text{ for } r \neq s\}$ for different values of β .

Critical Temperature Behavior[7, 6, 4]



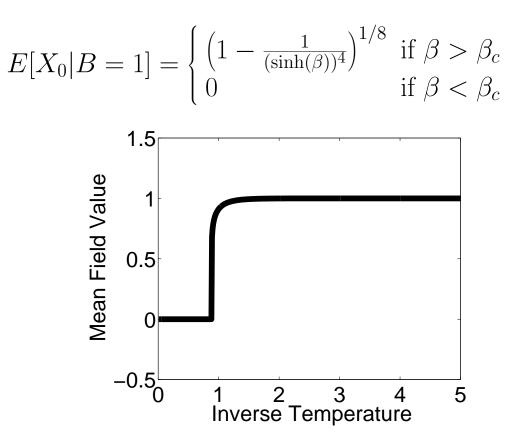
- $\frac{1}{\beta}$ is analogous to temperature.
- Peierls showed that for $\beta > \beta_c$

$$\lim_{N \to \infty} P(X_0 = 0 | B = 0) \neq \lim_{N \to \infty} P(X_0 = 0 | B = 1)$$

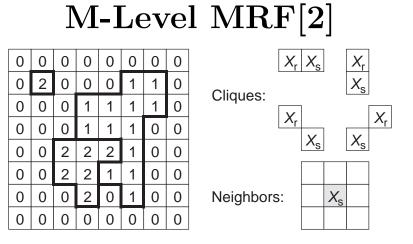
- The effect of the boundary does not diminish as $N \to \infty$!
- $\beta_c \approx .88$ is known as the critical temperature.
- Very nice proof of critical temperature in [4].

Critical Temperature Analysis[5]

• Amazingly, Onsager was able to compute the following result as $N \to \infty$.



• Onsager also computed an analytic expression for Z(T)!



• Define $C_1 \stackrel{\triangle}{=} ($ hor./vert. cliques) and $C_2 \stackrel{\triangle}{=} ($ diag. cliques)

• Then

$$V(x_r, x_s) = \begin{cases} \beta_1 \delta(x_r \neq x_s) & \text{for } \{x_r, x_s\} \in \mathcal{C}_1 \\ \beta_2 \delta(x_r \neq x_s) & \text{for } \{x_r, x_s\} \in \mathcal{C}_2 \end{cases}$$

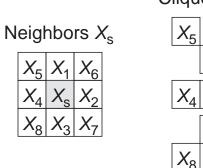
• Define

$$t_1(x) \stackrel{\triangle}{=} \sum_{\{s,r\} \in \mathcal{C}_1} \delta(x_r \neq x_s)$$
$$t_2(x) \stackrel{\triangle}{=} \sum_{\{s,r\} \in \mathcal{C}_2} \delta(x_r \neq x_s)$$

• Then the probability is given by

$$p(x) = \frac{1}{Z} \exp \left\{ -(\beta_1 t_1(x) + \beta_2 t_2(x)) \right\}$$

Conditional Probability of a Pixel



Cliques Containing $X_{\rm s}$						
X_5		X_1		X_6		
	Xs	Xs	Xs			
X_4	Xs		Xs	<i>X</i> ₂		
	Xs	$X_{\rm s}$	Xs			
<i>X</i> ₈		<i>X</i> ₃		<i>X</i> ₇		

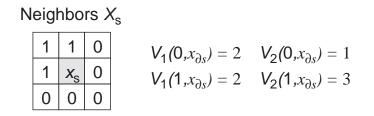
• The probability of a pixel given all other pixels is

$$p(x_s|x_{i\neq s}) = \frac{\frac{1}{Z} \exp\left\{-\sum_{c \in \mathcal{C}} V_c(x_c)\right\}}{\sum_{x_s=0}^{M-1} \frac{1}{Z} \exp\left\{-\sum_{c \in \mathcal{C}} V_c(x_c)\right\}}$$

• Notice: Any term $V_c(x_c)$ which does not include x_s cancels.

$$p(x_s|x_{i\neq s}) = \frac{\exp\left\{-\beta_1 \sum_{i=1}^4 \delta(x_s \neq x_i) - \beta_2 \sum_{i=5}^8 \delta(x_s \neq x_i)\right\}}{\sum_{x_s=0}^{M-1} \exp\left\{-\beta_1 \sum_{i=1}^4 \delta(x_s \neq x_i) - \beta_2 \sum_{i=5}^8 \delta(x_s \neq x_i)\right\}}$$

Conditional Probability of a Pixel (Continued)



• Define

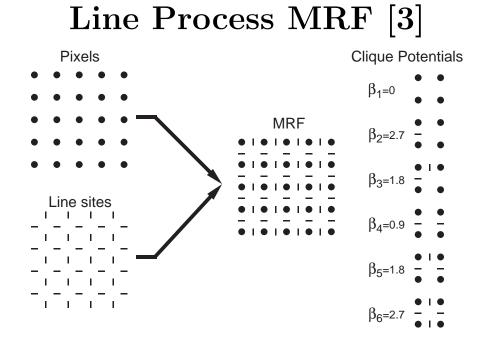
$$v_1(x_s, \partial x_s) \stackrel{\triangle}{=} \# \text{ of horz./vert. neighbors} \neq x_s$$

 $v_2(x_s, \partial x_s) \stackrel{\triangle}{=} \# \text{ of diag. neighbors} \neq x_s$

$$p(x_s|x_{i\neq s}) = \frac{1}{Z'} \exp\left\{-\beta_1 v_1(x_s, \partial x_s) - \beta_2 v_2(x_s, \partial x_s)\right\}$$

where Z' is an easily computed normalizing constant

• When $\beta_1, \beta_2 > 0, X_s$ is most likely to be the majority neighboring class.



- Line sites fall between pixels
- The values β_1, \dots, β_2 determine the potential of line sites
- The potential of pixel values is

$$V(x_s, x_r, l_{r,s}) = \begin{cases} (x_s - x_r)^2 & \text{if } l_{r,s} = 0\\ 0 & \text{if } l_{r,s} = 1 \end{cases}$$

- The field is
 - Smooth between line sites
 - Discontinuous at line sites

References

- [1] J. Besag. Spatial interaction and the statistical analysis of lattice systems. *Journal of the Royal Statistical Society B*, 36(2):192–236, 1974.
- [2] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society B, 48(3):259–302, 1986.
- [3] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. *IEEE Trans.* on Pattern Analysis and Machine Intelligence, PAMI-6:721–741, November 1984.
- [4] R. Kindermann and J. Snell. Markov Random Fields and their Applications. American Mathematical Society, Providence, 1980.
- [5] L. Onsager. Crystal statistics i. a two-dimensional model. *Physical Review Letters*, 65:117–149, 1944.
- [6] R. E. Peierls. On Ising's model of ferromagnetism. Proc. Camb. Phil. Soc., 32:477–481, 1936.
- [7] R. E. Peierls. Statistical theory of adsorption with interaction between the adsorbed atoms. *Proc. Camb. Phil. Soc.*, 32:471–476, 1936.