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Markov Random Fields

e Noncausal model
e Advantages of MRF'’s

— Isotropic behavior

— Only local dependencies
e Disadvantages of MRF’s
— Computing probability is difficult

— Parameter estimation is difficult

e Key theoretical result: Hammersley-Clifford theorem
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Definition of Neighborhood System

e Define

S - set of lattice points
s - a lattice point, s € S
X, - the value of X at s
0s C S - the neighboring points of s

e A neighborhood system 0s must be symmetric
re€ds=s€0r alsos¢&0Js

e Eixample of 8 point neighborhood

X(0.0) | X0.1) | X(0.2) | X(0,3) | X(0.4)

X0 | Xa | Xa2 | X@s) | Xaa

X(2,0) X(2,1) X(z,z) X(2'3) X(2’4) Neighbors of X(2,2)

X30 | X@ | X62) | X@3) | X6

X@0) | K@) | X@2) | X@3) | X449
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Markov Random Field

e Definition: A random object X on the lattice S with neighborhood system
Js is said to be a Markov random field if for all s € S

plxs|z, for r # s) = p(xs|ros)

e Problem: How do we write down the distribution for an MRF?

Unfortunately
p(x) # HSP<5US‘37T for r # s)
sc
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Definition of Clique

e A clique is a set of points, ¢, which are all neighbors of each other

Vs, r €c,r € 0Js

e 8 point neighborhood system

X0,0 | X0 | X02) | X0.3) | X04)

Xwo | Xay | Xa2) | Xas) | Xws

X2,0) X(2,1) X@2.2) X(2)3) X(2.4) Neighbors of X(2,2)

X0 | X@y | Xe2) | Xe3) | X6

X@,0 | X@ | X@2) | X3 | K@

e Eixample of cliques for 8 point neighborhood

1-point clique D

2-point cliques [ [ | E DD [j

3-point cliques ‘ ‘ ‘ ‘

4-point cliques

Not a clique
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Gibbs Distribution

x. - The value of X at the points in clique c.

Vi(x.) - A potential function is any function of x...

o A (discrete) density is a Gibbs distribution if
1

p(a) = 5 exp = Vitwo)|

C is the set of all cliques

Z 1s the normalizing constant for the density.

e / is known as the partition function.

o U(x)= cgc V.(x.) is known as the energy function.
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Hammersley-Clifford Theorem|1]

X is a Markov random field
& <—
Ve, P{X =z}>0

P{X =z} has the form
of a Gibbs distribution

e Gives you a method for writing the density for a MRF
e Does not give the value of Z, the partition function.

e Positivity, P{X = x} > 0, is a technical condition which we will generally
assume.
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Markov Chains are MRF'’s

~_

Neighbors of X,

e Neighbors of n are On = {n —1,n+ 1}
e Cliques have the form ¢ = {n — 1,n}

e Density has the form

=

p(z) = p(xo) Hlp(fﬂn!xn_l)

n—=

N
— plao)exp | £ logplanen-)|

n=

e The potential functions have the form

V(n, 2n-1) = —log p(xs|zn-1)
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1-D MRF’s are Markov Chains

o Let X, be a 1-D MRF with On ={n—1,n+ 1}
e The discrete density has the form of a Gibbs distribution

p(x) = p(xo) exp {— 7%1 V(xn, $n—1)}

e [t may be shown that this is a Markov Chain.

e Transition probabilities may be difficult to compute.
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The Ising Model

e First proposed to model 2-D magnetic structures.
e See the work of Peierls for an early treatment|7, 6].

e Kindermann and Snell have a very clear tutorial treatment in [4].

e Lattice geometry

— S is a rectangular lattice of NV pixels.
— 4-point neighborhood system with cliques ¢ € C.

— Assume circular boundary conditions for now.
e Lattice energy

— Each pixel X € {—1,+41} corresponding to north and south poles.
— Potential of clique {r,s} € Cis —5.X, X,.
— Total energy is

= —— X, Xg .
u<x> 2 {r,%EC
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Physical Basis of Gibbs Distribution

e What is the equilibrium distribution pe(z)?

e [ixpected energy is
g{pe} — %Z%(x) u<x)

e [mtropy is
H{pe} — % —pe($) 1nge($>
e First Law of Thermodynamics: Expected energy must be constant.

e Second Law of Thermodynamics: Entropy must be maximized.

e — H e
p (37) s pe:g{prgi%OHSt {p }

e Solution is the Gibbs distribution!

o) = exp| - ulo)]

—I" 1s tempurature

— k 1s Boltzmann’s constant
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Distribution for Ising Model

e Fqualibrium distribution for Ising model is

p(x)

1
—exp
Z
1
—exp
Z
1
? eXpP

J 5 X?“Xs}

2kT {r,s}eC

J 1

Ea L5(X, £ X, )
kT {r,%EC (2 ( 7& ) }
— > (X, #£ X
(7 500 50)

where 8 = ;7. is a model parameter and (X, # X,) is an indicator function

for the event X, # Xj.

e By the Hammersly-Clifford Theorem, X is a MRF with a 4-point neighbor-

hood.
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Interpretation of Ising Model

Cliques: | X,|Xq X,
XS

Boundary:

+ |+ [+ [+ |+ |+ ]

e Potential functions are given by
Vix,, xs) = Bo(x, # x5)
e Energy function is given by
cgc Ve(x.) = f(Boundary length)

e Interpretation of probability density

1
p(x) = —exp{—pF(Boundary length)}
2

e Longer boundaries = less probable
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Conditional Probability of a Pixel in Ising Model

Cliques Containing Xj

Neighbors Xj X1
X1 Xs

X, Xg| X Xya| X Xs| X5
X; X,
X3

e The probability of a pixel given all other pixels is

L _
p(xs\xi#s) — Mglei{p { 2eeC ‘/c(l'c)}
Sr=0 7 eXP { — Zeec Ve(Te) }

e Notice: Any term V,(x.) which does not include z, cancels.

| B exp {—ﬁ Zglzl 5<375 7é x@)}
P(@s|Tizs) = s Lexp {(—B st 6(z, £ 2:)}
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Conditional Probability of a Pixel in Ising Model
(Continued)

Neighbors X,

1 V(0,%5) = 1
O XS O V(l’xas) — 3

0

e Define
v(xs, Oxg) 2 4 of horzontal /vertical neighbors # x
e Then
exp {—pv(xs, 0xs)}
p(azs|x#8) = — /
> exp{ 5”(55573378)}

e When 3 > 0, X is most likely to be the majority neighboring class.
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Conditional Distribution Plots

Frobabpility that XS =1

1 ‘
— B= 0.00
— B= 025
0.8 — B= 0.50 |
— B=0.75
— B= 1.00
> i 1
£0.6 B= 1.25
O
(4]
O
S
a 04
0.2
% 1 2 3 4

Number of neighbors not equal to 1

o P{X, = 1|X, for r # s} for different values of j.

15
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Critical Temperature Behavior|7, 6, 4]

A
Y

+ [+ |+ |w

Center Pixel X_: D

Z
W00 |W ||| ||
W+ |+ |+ |+ |+ |+ |+ ]|m
W W W | w| o |w|w|w|w

1 B|B|B|B|B

° é is analogous to temperature.

e Peierls showed that for 5 > 5.
lim P(Xy=0/B=0)+# lim P(Xqg=0|B=1)

N—00 N—00

e The effect of the boundary does not diminish as N — oo!
e 0.~ .88 is known as the critical temperature.

e Very nice proof of critical temperature in [4].
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Critical Temperature Analysis|5]

e Amazingly, Onsager was able to compute the following result as N — oo.

NV
EXo|B = 1] = | (1~ @) 18> 5
0 if B < B.

1.5

Mean Field Value
o
(@)]

o

|
o
)

1 2 3 4 5
Inverse Temperature

e Onsager also computed an analytic expression for Z(7T)!
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M-Level MRF|[2]
E

x| x|
ERRNFY

Cliques:

Neighbors: Xs

OO0 |0 |O
OO0 |O|N]O
O |OIN[IN]JO|O|O |O
OININ[(N]F |k, ]|O|O
OO, |IN]|F |k, ]|O|O
Ol P (kP[P |F,|FL]O
OO0 (OO} | ]O
OO0 |O0|O |O

e Define C; 2 ( hor. /vert. cliques) and Cy 2 ( diag. cliques)

e Then
V(. z.) = B10(x, # x4) for {x,, x5} € C
D Bed(x, #£ xs) for {x,, x5} € Co

e Define

1>

> oz, # x,
{s,r}eCy ( # >

> oz, # 1
{s,r}eCs ( ?é )

1>

e Then the probability is given by

1

p(x) = - &XP {—(Bit1(z) + Bata(z)) }

18
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Conditional Probability of a Pixel

Cliques Containing Xg

Neighbors Xq Xs Xq Xg
X5 X1| Xg Xs| [Xs|[Xs
Xa| Xs| Xo Xa| Xg Xs| Xo
Xg| X3| X7 X[ [ X[ Xs

Xg X3 X7

e The probability of a pixel given all other pixels is

= _
p(ZCS‘CCZ#S) — Mglei{p { >ceC %(SEC)}
Sr=0 7 eXP { — Zeec Ve(xe) }

e Notice: Any term V,(z.) which does not include z, cancels.

exp {—/31 £h 1 0(xs # xi) — Bosb_s d(ws # 372)}

Lg|Lits) = —
P(@s|Tizs) Z%:(% exp{—01 5t 0(xs # x;) — Bosb_ 0(s # ;) }

19
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Conditional Probability of a Pixel (Continued)

Neighbors X

1110 V1(0.x59) =2 V5(0.x59 = 1
1% 0 Vi(1X9 =2 Va(l,X39 = 3

ololo
e Define
v1 (s, 0T ) 2 4 of horz. /vert. neighbors # x4
v9(xs, Oxs) = # of diag. neighbors # x
e Then
(4| Tizs) = Zl,eXp {—=Bivi(zs, 0x,) — Bova(xs, Oxy)}

where Z’ is an easily computed normalizing constant

e When 34, B > 0, X is most likely to be the majority neighboring class.



EE641 Digital Image Processing 1I: Purdue University VISE - November 14, 2012

Line Process MRF [3]

Pixels Clique Potentials

B1=0

MRF
eloeioeiole@ =27
cieicieie
----- B8

----- Bs=09

N

Line sites

™

gl
1l
i
o]

™

%
N
~

e Line sites fall between pixels
e The values 3y, - - -, B9 determine the potential of line sites

e The potential of pixel values is
(s —x,)* ifls=0

Viws, @ lrs) = 4 if 1, =1

e The field is

— Smooth between line sites

— Discontinuous at line sites
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