Purdue

ECE 64100

Midterm Exam, November 7, Fall 2025

NAME	PUID

Exam instructions:

- A fact sheet is included at the end of this exam for your use.
- You have 60 minutes to work the exam.
- This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any supplementary reference, a calculator, or any communication device including a cell-phone or computer.
- You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:

- Write your full name and PUID above and on the top of every page.
- Answer all questions in the area designated for each problem.
- Write only on the front of the exam pages.
- DO NOT run over to the next question.

Name/PUID: Key

Problem 1.(35pt) Causal and Non-Causal MRFs

Let X_n be a zero-mean 1-D Gaussian AR process indexed by n, and let h_n be the MMSE causal prediction filter and σ_C^2 be the causal prediction variance.

In addition, let g_n be the MMSE non-causal prediction filter with non-causal prediction variance given by σ_{NC}^2 .

Problem 1a) Write an expression for the power spectrum $S_X(\omega)$ of the random process in terms of the causal model parameters (σ_C^2, h_n) .

Problem 1b) Write an expression for the power spectrum $S_X(\omega)$ of the random process in terms of the noncausal model parameters (σ_{NC}^2, g_n) .

Problem 1c) Derive an equation that relates (σ_C^2, h_n) to (σ_{NC}^2, g_n) to by equating the equations of parts a) and b) above.

Problem 1d) Determine g_n the non-causal prediction filter in terms of h_n , σ_C^2 , and σ_{NC}^2 .

Problem 1e) Determine σ_{NC}^2 the non-causal prediction variance in terms of (σ_C^2, h_n) .

Solution:

Q1a:

 $S_X(\omega) = \frac{\sigma_C^2}{|1 - H(\omega)|^2} ,$

where

$$H(\omega) = \sum_{n = -\infty}^{\infty} h_n e^{-j\omega n}$$

Q1b:

$$S_X(\omega) = \frac{\sigma_{NC}^2}{1 - G(\omega)} ,$$

where

$$H(\omega) = \sum_{n=-\infty}^{\infty} g_n e^{-j\omega n}$$

Q1c:

$$\begin{split} \frac{\sigma_C^2}{|1-H(\omega)|^2} &= \frac{\sigma_{NC}^2}{1-G(\omega)} \\ \sigma_C^2(1-G(\omega)) &= \sigma_{NC}^2|1-H(\omega)|^2 \\ \sigma_C^2(\delta_n-g_n) &= \sigma_{NC}^2(\delta_n-h_n)*(\delta_n-h_{-n}) \end{split}$$

Q1d:

$$\begin{split} \sigma_C^2(\delta_n - g_n) &= \sigma_{NC}^2(\delta_n - h_n) * (\delta_n - h_{-n}) \\ (\delta_n - g_n) &= \frac{\sigma_{NC}^2}{\sigma_C^2} (\delta_n - h_n) * (\delta_n - h_{-n}) \\ g_n &= \delta_n - \frac{\sigma_{NC}^2}{\sigma_C^2} (\delta_n - h_n) * (\delta_n - h_{-n}) \end{split}$$

Q1e:

$$g_{n}|_{n=0} = \delta_{n} - \frac{\sigma_{NC}^{2}}{\sigma_{C}^{2}} (\delta_{n} - h_{n}) * (\delta_{n} - h_{-n}) \Big|_{n=0}$$

$$0 = 1 - \frac{\sigma_{NC}^{2}}{\sigma_{C}^{2}} \left(1 + \sum_{n=1}^{\infty} h_{n}^{2} \right)$$

$$\sigma_{NC}^{2} = \frac{\sigma_{C}^{2}}{(1 + \sum_{n=1}^{\infty} h_{n}^{2})}$$

Name/PUID: _____

Problem 2.(21pt) Shrinkage Operator

Consider the proximal map given by

$$S_{\lambda}(y) = \arg\min_{x \in \Re^{N}} \left\{ \lambda ||x||_{1} + \frac{1}{2} ||x - y||^{2} \right\}$$

Problem 2a) Calculate an explicit form for the function $S_{\lambda}(y)$ when N=1.

Problem 2b) Calculate an explicit form for the function $S_{\lambda}(y)$ when N > 1.

Problem 2c) Explain in words (i.e., emotionally) what $S_{\lambda}(y)$ does.

Solution:

Q2a:

$$S_{\lambda}(y) = \begin{cases} y - \lambda & \text{for } y \ge \lambda \\ 0 & \text{for } |y| < \lambda \\ y + \lambda & \text{for } y \le \lambda \end{cases}$$

Q2b:

When N > 1, then $S_{\lambda}(y)$ applies the function to each component of y. So we have that

$$S_{\lambda}(y) = \left[egin{array}{c} S_{\lambda}(y_0) \ S_{\lambda}(y_1) \ dots \ S_{\lambda}(y_{N-1}) \end{array}
ight] \;,$$

where

$$S_{\lambda}(y) = \begin{cases} y - \lambda & \text{for } y \ge \lambda \\ 0 & \text{for } |y| < \lambda \\ y + \lambda & \text{for } y \le \lambda \end{cases}$$

Q2c:

 $S_{\lambda}(y)$ sets any value of y that has magnitude less than λ to zero, but it allows values with magnitude large than λ to be maintained but with a value shift towards 0.

Name/PUID: _____

Problem 3.(21pt) Proximal Maps

Consider the proximal map given by

$$H(y) = \arg\min_{x \in \Re^N} \left\{ \frac{1}{2\sigma^2} ||y - x||^2 + h(x) \right\}$$

For this problem, we will interpret H(y) as a MAP estimate of \hat{x} given y.

Problem 3a) What is the forward model for this MAP estimate? Express your answer by giving an expression for Y given X.

Problem 3b) What is the prior model for this MAP estimate? Express your answer by giving an expression for p(x).

Problem 3c) What happens if you iterate H(y), i.e., you do the following:

Repeat
$$\{x \leftarrow H(x)\}$$

Problem 3d) Imagine that you would like to learn the proximal MAP $H_{\theta}(y)$ from training data. Then how would you generate the training data, and how would you estimate θ ?

Solution:

Q3a:

$$Y = X + \sigma W ,$$

where $W \sim N(0, I)$.

Q3b:

$$p(x) = \frac{1}{Z} \exp\{-h(x)\}\$$

Q3c:

You should converge to the most probable value of x given by

$$x^* = \arg\min\{h(x)\}$$

Q3d:

You would first generate K samples from the prior distribution $\{X_k\}_{k=0}^{K-1}$. Then for each sample, you should generate a corresponding image Y_k with independent additive white Gaussian noise (AWGN).

$$Y_k = X_k + \sigma W_k ,$$

where $W_k \sim N(0, I)$.

Then to design an approximate proximal map, H_{θ^*} you would select the parameter θ^* so that it minimizes a loss function $L(\theta)$ so that

$$\theta^* = \arg\min_{\theta} L(\theta) ,$$

where

$$L(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} ||X_k - H_{\theta}(Y_k)||^2.$$

So then H_{θ^*} is a denoiser that minimizes the total squared error on the training data set.

Name/PUID: _____ **Problem 4.**(35pt) Contraction Mappings Consider a function $H: \Re^2 \to \Re^2$ given by y = H(x) where $H(x) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] x$ **Problem 4a)** Is H(x) a contraction map? **Problem 4b)** Is H(x) non-expansive? **Problem 4c)** Does the following iteration converge? Repeat $\{x \leftarrow H(x)\}$ Justify your answer. **Problem 4d)** Does the following iteration converge? Repeat $\{x \leftarrow (1 - \rho)x + \rho H(x)\}$ for $\rho \in (0, 1)$ Justify your answer. **Problem 4e)** What does the iteration of 4d converge to? **Solution: Q4a**: No **Q4b**: Yes **Q4c:** No because it will just reflect about the diagonal with each iteration. **Q4d**: Yes, because this is a Mann iteration and H(x) has a fixed point for x = [t, t] for any t. So the Mann iteration must converge to one of these fixed points. **Q4e**:

If $x^0 \in \Re^2$ is the initial value, and x^∞ is the asymptotic value, then the iterations will converge to the projection of x onto the diagonal. So that results in

$$x^{\infty} = \frac{\langle \mathbf{1}, x^0 \rangle \mathbf{1}}{\sqrt{2}}$$
$$= \left[\frac{x_0^0 + x_0^0}{2}, \frac{x_0^0 + x_0^0}{2} \right] .$$

ECE641 Fact Sheet

Maximum Likelihood (ML) Estimator (Frequentist)

$$\hat{\theta} = \arg \max_{\theta \in \Omega} p_{\theta}(Y) = \arg \max_{\theta \in \Omega} \log p_{\theta}(Y)$$

$$0 = \nabla_{\theta} p_{\theta}(Y)|_{\theta = \hat{\theta}}$$

$$\hat{\theta} = T(Y)$$

$$\bar{\theta} = \mathbb{E}_{\theta}[\hat{\theta}]$$

$$\text{bias}_{\theta} = \bar{\theta} - \theta \quad \text{var}_{\theta} = \mathbb{E}_{\theta}[(\hat{\theta} - \bar{\theta})^{2}]$$

$$MSE = \mathbb{E}_{\theta}[(\hat{\theta} - \theta)^{2}] = \text{var}_{\theta} + (\text{bias}_{\theta})^{2}$$

For Y = AX + W, where X and W are independent zero mean Gaussian distributed with R_X and R_W , respectively. Then the ML estimate is find by maximizing $log(p_{y/x}(y/x))$:

$$\hat{X}_{ML} = (A^t R_W^{-1} A)^{-1} A^t R_W^{-1} y$$

Maximum A Posteriori (MAP) Estimator

$$\begin{split} \hat{X}_{MAP} &= \arg\max_{x \in \Omega} p_{x|y}(x|Y) \\ &= \arg\max_{x \in \Omega} \log p_{x|y}(x|Y) \\ &= \arg\min_{x \in \Omega} \{-\log p_{y|x}(y|x) - \log p_x(x)\} \end{split}$$

For Y = AX + W, where X and W are independent zero mean Gaussian distributed with R_X and R_W , respectively. Then the MAP or equivalently MMSE estimate is:

$$\hat{X}_{MAP} = (A^t R_W^{-1} A + R_X^{-1})^{-1} A^t R_W^{-1} y$$

Power Spectral Density (zero-mean WSS Gaussian process)

1D DTFT:

$$S_X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} R(n)e^{-j\omega n}$$

2D DSFT:

$$S_X(e^{j\omega_1}, e^{j\omega_2}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} R(m, n) e^{-j\omega_1 m - j\omega_2 n}$$

Causal Gaussian Models

$$\sigma_n^2 \stackrel{\Delta}{=} \mathbb{E}[\mathcal{E}_n^2], \ \hat{X} = HX, \ \mathcal{E} = (I - H)X = AX, \\ \mathbb{E}[\mathcal{E}\mathcal{E}^t] = \Lambda, \ \Lambda = \operatorname{diag}\{\sigma_1^2, \sigma_2^2, ..., \sigma_N^2\}$$

$$p_x(x) = |det(A)|p_{\mathcal{E}}(Ax), |det(A)| = 1,$$

 $R_X = (A^t \Lambda^{-1} A)^{-1}$

1-D Gaussian AR models:

- Toeplitz $H_{i,j} = h_{i-j}$
- Circulant $H_{i,j} = h_{(i-j)modN}$
- P^{th} order IIR filter $X_n = \mathcal{E}_n + \sum_{i=1}^P X_{n-i} h_i$, $R_{\mathcal{E}}(i-j) = \mathbb{E}[\mathcal{E}_i \mathcal{E}_j] = \sigma_c^2 \delta_{i-j}$
- $R_X(n)*(\delta_n h_n)*(\delta_n h_{-n}) = R_{\mathcal{E}}(n) = \sigma_c^2 \delta_n$, $S_X = \frac{\sigma_c^2}{|1 - H(\omega)|^2}$

2-D Gaussian AR:

- $\mathcal{E}_s = X_s \sum_{r \in W_p} h_r X_{s-r}$
- Toeplitz block Toeplitz $H_{mN+k,nN+l} = h_{m-n,k-l}$

Non-causal Gaussian Models

- $\sigma_n^2 \stackrel{\Delta}{=} \mathbb{E}[\mathcal{E}_n^2 | X_i, i \neq n], \ B_{i,j} = \frac{1}{\sigma_i^2} (\delta_{i-j} g_{i,j}),$ $\sigma_n^2 = (B_{n,n})^{-1}, \ g_{n,i} = \delta_{n-i} - \sigma_n^2 B_{n,i} \ \text{(homogeneous:} \ g_{i,j} = g_{i-j}, \sigma_i^2 = \sigma_{NC}^2)$
- $G_{i,j} = g_{i,j}, \ \Gamma = \text{diag}\{\sigma_1^2, \sigma_2^2, ..., \sigma_N^2\},\ B = \Gamma^{-1}(I G), \ \Gamma = \text{diag}(B)^{-1}, \ G = I \Gamma B,\ \mathbb{E}[\mathcal{E}_n X_{n+k}] = \sigma_{NC}^2 \delta_k$
- $R_X(n) * (\delta_n g_n) * (\delta_n g_{-n}) = R_{\mathcal{E}}(n) = \sigma_{NC}^2(\delta_n g_n), S_X = \frac{\sigma_{NC}^2}{1 G(\omega)}, R_X(n) * (\delta_n g_n) = \sigma_{NC}^2 \delta_n$
- Relationship b/w AR and GMRF: $\sigma_{NC}^2 = \frac{\sigma_c^2}{1+\sum_{n=1}^P h_n^2}$, $g_n = \delta_n \frac{(\delta_n h_n)*(\delta_n h_{-n})}{1+\sum_{n=1}^P h_n^2} (= \frac{\rho}{1+\rho^2} (\delta_{n-1} + \delta_{n+1}), \ P = 1)$

Surrogate Function

Our objective is to find a surrogate function $\rho(\Delta; \Delta')$, to the potential function $\rho(\Delta)$.

Maximum Curvature Method

Assume the surrogate function of the form

$$\rho(\Delta; \Delta') = \alpha_1 \Delta + \frac{\alpha_2}{2} (\Delta - \Delta')^2$$

where $\alpha_1 = \rho'(\Delta')$ and $\alpha_2 = \max_{\Delta \in \mathbb{R}} \rho''(\Delta)$.

Symmetric Bound Method

Assume that potential function is bounded by symmetric and quadratic function of Δ , then the surrogate function is

$$\rho(\Delta; \Delta') = \frac{\alpha_2}{2} \Delta^2$$

which results in the following symmetric bound surrogate function:

$$\rho(\Delta; \Delta') = \begin{cases} \frac{\rho'(\Delta')}{2\Delta'} \Delta^2 & \text{if} \quad \Delta' \neq 0\\ \frac{\rho''(0)}{2} \Delta^2 & \text{if} \quad \Delta' = 0 \end{cases}$$

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Compact Sets

Let $\mathcal{A} \subset \mathbb{R}^N$, then we say that \mathcal{A} is:

- Closed if every convergent sequence in \mathcal{A} has its limit in \mathcal{A} .
- Bounded if $\exists M$ such that $\forall x \in \mathcal{A}$, ||x|| < M.
- Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function $f: \mathbb{R}^N \to \mathbb{R} \cup \{\infty\}$ is **closed** if for all $\alpha \in \mathbb{R}$, the sublevel set $\mathcal{A}_{\alpha} = \{x \in \mathbb{R}^N : f(x) \leq \alpha\}$ is closed set.

Theorem A.6. Continuity of Proper, Closed, Convex Functions

Let $f: \mathbb{R}^N \to \mathbb{R} \cup \{\infty\}$ be a proper convex function. Then f is closed if and only if it is lower semicontinuous.

Optimization Methods:

Gradient Descent: $x^{(k+1)} = x^{(k)} - \beta \nabla f(x^{(k)})$

Gradient Descent with Line Search:

$$d^{(k)} = -\nabla f(x^{(k)})$$

 α solves the equation : $0 = \frac{\partial f(x^{(k)} + \alpha d^{(k)})}{\partial \alpha} = \left[\nabla f(x^{(k)} + \alpha d^{(k)})\right]^t d^{(k)}.$

Update: $x^{(k+1)} \leftarrow x^k + \alpha \frac{\|d^{(k)}\|^2}{\|d^{(k)}\|_Q^2} d^{(k)}$ where $Q = A^t \Lambda A + B$

Coordinate Descent:

$$\alpha = \frac{(y - Ax)^t \Lambda A_{*,s} - x^t B_{*,s}}{\|A_{*,s}\|_{\Lambda}^2 + B_{s,s}} \text{ (for } Y | X \sim N(AX, \Lambda^{-1}))$$

$$x_s \leftarrow x_s + \frac{(y - Ax)^t A_{*,s} - \lambda(x_s - \Sigma_{r \in \partial s} g_{s-r} x_r)}{\|A_{*,s}\|^2 + \lambda}, \lambda = \frac{\sigma^2}{\sigma_x^2}$$

Pairwise quadratic form identity

$$x^tBx = \sum\limits_{s \in S} a_s x_s^2 + \frac{1}{2} \sum\limits_{s \in S} \sum\limits_{r \in S} b_{s,r} |x_s - x_r|^2, \, a_s = \sum\limits_{r \in S} B_{s,r}, \, b_s = -B_{s,r}$$

Miscellaneous

For any invertible matrix
$$A$$
, 1. $\frac{\partial |A|}{\partial A} = |A|A^{-1}$ 2. $\frac{\partial tr(BA)}{\partial A} = B$ 3. $tr(AB) = tr(BA)$