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Digital Halftoning

• Many image rendering technologies only have binary out-

put. For example, printers can either “fire a dot” or not.

• Halftoning is a method for creating the illusion of contin-

uous tone output with a binary device.

• Effective digital halftoning can substantially improve the

quality of rendered images at minimal cost.



C. A. Bouman: Digital Image Processing - January 8, 2025 2

Thresholding

• Assume that the image falls in the range of 0 to 255.

• Apply a space varying threshold, T (i, j).

b(i, j) =

{
255 if X(i, j) > T (i, j)
0 otherwise

.

• What is X(i, j)?

• Lightness

– Larger⇒ lighter

– Used for display

• Absorptance

– Larger⇒ darker

– Used for printing

• X(i, j) will generally be in units of absorptance.
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Constant Threshold

• Assume that the image falls in the range of 0 to 255.

• 255⇒ Black and 0⇒ White

• The minimum squared error quantizer is a simple thresh-

old

b(i, j) =

{
255 if X(i, j) > T

0 otherwise
.

where T = 127.

• This produces a poor quality rendering of a continuous

tone image.
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The Minimum Squared Error Solution

• Threshold each pixel

– Pixel> 127 Fire ink

– Pixel≤ 127 do nothing
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Ordered Dither

• For a constant gray level patch, turn the pixel “on”in a

specified order.

• This creates the perception of continuous variations of

gray.

• An N ×N index matrix specifies what order to use.

I2(i, j) =

[
1 2
3 0

]

• Pixels are turned on in the following order.

0 1 2 3 4
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Implementation of Ordered Dither via
Thresholding

• The index matrix can be converted to a “threshold matrix”

or “screen” using the following operation.

T (i, j) = 255
I(i, j) + 0.5

N 2

• The N × N matrix can then be “tiled” over the image

using periodic replication.

T (imodN, j modN)

• The ordered dither algorithm is then applied via thresh-

olding.

b(i, j) =

{
255 if X(i, j) > T (imodN, j modN)
0 otherwise

.
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Clustered Dot Screens

• Definition: If the consecutive thresholds are located in

spatial proximity, then this is called a “clustered dot screen.

• Example for 8× 8 matrix:

62 57 48 36 37 49 58 63
56 47 35 21 22 38 50 59
46 34 20 10 11 23 39 51
33 19 9 3 0 4 12 24
32 18 8 2 1 5 13 25
45 31 17 7 6 14 26 40
55 44 30 16 15 27 41 52
61 54 43 29 28 42 53 60
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Example: 8× 8 Clustered Dot Screening

8x8 Cluster Dot
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• Only supports 65 gray levels.
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Example: 16× 16 Clustered Dot Screening

16x16 Cluster Dot
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• Support a full 257 gray levels, but has half the resolution.
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Properties of Clustered Dot Screens

• Requires a trade-off between number of gray levels and

resolution.

• Relatively visible texture

• Relatively poor detail rendition

• Uniform texture across entire gray scale.

• Robust performance with non-ideal output devices

– Non-additive spot overlap

– Spot-to-spot variability

– Noise
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Dispersed Dot Screens

• Bayer’s optimum index Matrix (1973) can be defined re-

cursively.

I2(i, j) =

[
1 2
3 0

]

I2n =

[
4 ∗ In + 1 4 ∗ In + 2
4 ∗ In + 3 4 ∗ In

]

• Examples

1 2

3 0

5 9 6 10

13 1 14 2

7 11 4 8

15 3 12 0

21 37 25 41 22 38 26 42

53 5 57 9 54 6 58 10

29 45 17 33 30 46 18 34

61 13 49 1 62 14 50 2

23 39 27 43 20 36 24 40

55 7 59 11 52 4 56 8

31 47 19 35 28 44 16 32

63 15 51 3 60 12 48 0

2× 2 4× 4 8× 8

• Yields finer amplitude quantization over larger area.

• Retains good detail rendition within smaller area.
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Example: 8× 8 Bayer Dot Screening

8x8 Bayer Dot
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• Again, only 65 gray levels.
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Example: 16× 16 Bayer Dot Screening

16x16 Bayer Dot

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Bayer Screen of Size 16

50 100 150 200 250

50

100

150

200

250

300

350

• Doesn’t look much different than the 8× 8 case.

• No trade-off between resolution and number of gray lev-

els.
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Example: 128× 128 Void and Cluster Screen
(1989)
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• Substantially improved quality over Bayer screen.
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Properties of Dispersed Dot Screens

• Eliminate the trade-off between number of gray levels and

resolution.

• Within any region containing K dots, the K thresholds

should be distributed as uniformly as possible.

• Textures used to represent individual gray levels have low

visibility.

• Improved detail rendition.

• Transitions between textures corresponding to different

gray levels may be more visible.

• Not robust to non-ideal output devices

– Requires stable formation of isolated single dots.
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Error Diffusion

• Error Diffusion

– Quantizes each pixel using a neighborhood operation,

rather than a simple pointwise operation.

– Moves through image in raster order, quantizing the

result, and “pushing” the error forward.

– Can produce better quality images than is possible with

screens.
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Filter View of Error Diffusion

+

Quantizer+

+

+

+ −
f(i, j)

f̃(i, j)
b(i, j)

e(i, j)
h(i, j)

• Equations are

b(i, j) =

{

255 if f̃ (i, j) > T

0 otherwise

e(i, j) = f̃ (i, j)− b(i, j)

f̃ (i, j) = f (i, j) +
∑

k,l∈S

h(k, l)e(i− k, j − l)

• Parameters

– Threshold is typically T = 127.

– h(k, l) are typically chosen to be positive and sum to 1
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1-D Error Diffusion Example

• f̃ (i)⇒ circles

• b(i)⇒ boxes
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Two Views of Error Diffusion

• Two mathematically equivalent views of error diffusion

– Pulling errors forward

– Pushing errors ahead

• Pulling errors forward

– More similar to common view of IIR filter

– Has advantages for analysis

• Pushing errors ahead

– Original view of error diffusion

– Can be more easily extended to important cases when

weights area time/space varying
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ED: Pulling Errors Forward

1. For each pixel in the image (in raster order)

(a) Pull error forward

f̃ (i, j) = f (i, j) +
∑

k,l∈S

h(k, l)e(i− k, j − l)

(b) Compute binary output

b(i, j) =

{

255 if f̃ (i, j) > T

0 otherwise

(c) Compute pixel’s error

e(i, j) = f̃ (i, j)− b(i, j)

f̃ (i, j) = f (k, j)+

e(i− 1, j + 1)e(i− 1, j)e(i− 1, j − 1)

e(i, j − 1) ∑

k,l

h(k, l)e(i−k, j−l)

2. Display binary image b(i, j)
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ED: Pushing Errors Ahead

1. Initialize f̃ (i, j)← f (i, j)

2. For each pixel in the image (in raster order)

(a) Compute

b(i, j) =

{

255 if f̃ (i, j) > T

0 otherwise

(b) Diffuse error forward using the following scheme

f̃ (i, j + 1)

+ = h(0, 1) ∗ e

f̃ (i + 1, j − 1)

+ = h(1,−1) ∗ e

f̃ (i + 1, j)

+ = h(1, 0) ∗ e

f̃ (i + 1, j + 1)

+ = h(1, 1) ∗ e

e= f̃ (i, j)−b(i, j)

3. Display binary image b(i, j)
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Commonly Used Error Diffusion Weights

• Floyd and Steinberg (1976)

7/16

3/16 5/16 1/16

• Jarvis, Judice, and Ninke (1976)

7/48 5/48

3/485/487/485/483/48

1/48 3/48 5/48 3/48 1/48
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Floyd Steinberg Error Diffusion (1976)

• Process pixels in neighborhoods by “diffusing error” and

quantizing.
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Quantization Error Modeling for Error
Diffusion

+

Quantizer+

+

+

+ −
f(i, j)

f̃(i, j)
b(i, j)

e(i, j)
h(i, j)

• Quantization error is commonly assumed to be:

– Uniformly distributed on [−0.5, 0.5]

– Uncorrelated in space

– Independent of signal f̃ (i, j)

– E [e(i, j)] = 0

– E [e(i, j)e(i + k, j + l)] = δ(k,l)
12
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Modified Error Diffusion Block Diagram

• The error diffusion block diagram can be rearranged to

facilitate error analysis

+

Quantizer+

+

+

+ −
f(i, j)

f̃(i, j)
b(i, j)

e(i, j)
h(i, j)

+ ++

+ + −

h(i, j)

f(i, j)
f̃(i, j)

e(i, j)

b(i, j)

e(i, j)

++

−
f(i, j)

e(i, j)

b(i, j)

δ(i, j)− h(i, j)
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Error Diffusion Spectral Analysis

• So we see that

b(i, j) = f (i, j)− (δ(i, j)− h(i, j)) ∗ e(i, j)

rewriting ...

f (i, j)− b(i, j) = (δ(i, j)− h(i, j))
︸ ︷︷ ︸

high pass filter

∗ e(i, j)
︸ ︷︷ ︸

quantization

error

– Display error is f (i, j)− b(i, j)

– Quantization error is e(i, j)

– Display error is a high pass version of quantization er-

ror

– Human visual system is less sensitive to high spatial

frequencies
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Error Image in Floyd Steinberg Error Diffusion

• Process pixels in neighborhoods by “diffusing error” and

quantizing.
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Correlation of Quantization Error and Image

• Quantizer error spectrum is unknown

• Quantizer error model

E(µ, ν) = ρF (µ, ν) +R(µ, ν)

= ρ(Image) + (Residual)

– ρ represents correlation between quantizer error and

image

Weight ρ

1-D 0.0

Floyd and Steinberg 0.55

Jarvis, Judice, and Ninke 0.8

• Using this model, we have

B(µ, ν) = F (µ, ν)− (1−H(µ, ν))E(µ, ν)

= [1− ρ (1−H(µ, ν))]F (µ, ν) + noise

• This is unsharp masking
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Additional Topics

• Pattern Printing

• Dot Profiles

• Halftone quality metrics

– Radially averaged power spectrum (RAPS)

– Weighted least squares with HVS constrast sensitivity

function

– Blue noise dot patterns

• Error diffusion

– Unsharp masking effects

– Serpentine scan patterns

– Threshold dithering

– TDED

• Least squared halftoning

• Printing and display technologies

– Electrophotographic

– Inkjet


