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Continuous Time Fourier Transform (CTFT)

F (f ) =

∫ ∞

−∞

f (t)e−j2πftdt

f (t) =

∫ ∞

−∞

F (f )ej2πftdf

• f (t) is continuous time. (Also known as continuous pa-

rameter.)

• F (f ) is a continuous function of frequency −∞ < f <
∞.
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Useful Continuous Time Signal Definitions

• Rect function: rect(t) =

{

1 for |t| ≤ 1/2
0 otherwise
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• Step function: u(t) =

{

1 for t ≥ 0
0 for t < 0
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• Sign function: sgn(t) =






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• Sinc function: sinc(t) =
sin(πt)

πt
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• Lambda function: Λ(t) =

{

1− |t| for |t| ≤ 1
0 for |t| > 1
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Continuous Time Delta Function

• The “function” δ(t) is actually not a function.

• δ(t) is defined by the property that for all continuous func-

tions g(t)

g(0) =

∫ ∞

−∞

δ(t)g(t)dt

• Intuitively, we may think of δ(t) as a very short pulse with

unit area.

g(0) = lim
ǫ→0

∫ ∞

−∞

[

1

ǫ
rect(t/ǫ)

]

g(t)dt

Intuitively (but not rigorously)

δ(t) = lim
ǫ→0

1

ǫ
rect(t/ǫ)
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Useful CTFT Relations

δ(t)
CTFT
⇔ 1

1
CTFT
⇔ δ(f )

rect(t)
CTFT
⇔ sinc(f )

sinc(t)
CTFT
⇔ rect(f )

Λ(t)
CTFT
⇔ sinc2(f )
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CTFT Properties

Property Time Domain Function CTFT

Linearity af (t) + bg(t) aF (f ) + bG(f )
Conjugation f ∗(t) F ∗(−f )
Scaling f (at) 1

|a|F (f/a)

Shifting f (t− t0) exp {−j2πft0}F (f )
Modulation exp {j2πf0t} f (t) F (f − f0)
Convolution f (t) ∗ g(t) F (f )G(f )
Multiplication f (t)g(t) F (f ) ∗G(f )
Duality F (t) f (−f )

• Inner product property
∫ ∞

−∞

f (t)g∗(t)dt =

∫ ∞

−∞

F (f )G∗(f )df


