Topics: Lossy image source coding

Spring 2008 Final: Problem 4 (rate-distortion))

Consider a discrete-time random process X_n with i.i.d. samples that are Gaussian with mean 0 and variance $\sigma^2 > 0$.

The rate distortion relation for this source is then given by

$$R(\Delta) = \max \left\{ \frac{1}{2} \log_2 \left(\frac{\sigma^2}{\Delta^2} \right), 0 \right\}$$

$$D(\Delta) = \min \left\{ \sigma^2, \Delta^2 \right\}$$

a) Plot the minimum possible rate (y-axis) versus distortion (x-axis) required to code this source when $\sigma^2 = 1$.

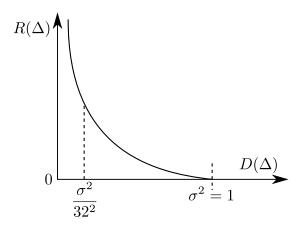
Solution:

$$\sigma^2 = 1, D(\Delta) = \min\left\{1, \Delta^2\right\}$$
if $0 < \Delta < 1$, and $D(\Delta) = \Delta^2$, and $\frac{\sigma^2}{\Delta^2} = \frac{1}{\Delta^2} > 1 \Rightarrow \frac{1}{2}\log_2\left(\frac{\sigma^2}{\Delta^2}\right) > \frac{1}{2}\log_2 1 = 0$

$$\therefore R(\Delta) = \frac{1}{2}\log_2\frac{1}{\Delta^2} = \frac{1}{2}\log_2\frac{1}{D(\Delta)}$$

if
$$\Delta \ge 1$$
, and $D(\Delta) = \sigma^2 = 1$, and $\frac{\sigma^2}{\Delta^2} \le 1$, and $\frac{1}{2} \log_2 \left(\frac{\sigma^2}{\Delta^2}\right) < 0 \Rightarrow R(\Delta) = 0$

Therefore, the plot is:



b) If we require that the distortion $D \leq \sigma^2$, then what is the minimum (lower bound) on the number of bits per sample that is required to transmit this signal?

Solution:

$$D \le \sigma^2$$
, the minimum number of bits per sample $R = 0$, since $\frac{1}{2} \log_2 \frac{\sigma^2}{D^2} \ge \frac{1}{2} \log_2 \frac{\sigma^2}{\sigma^2} = 0$

c) If we require that the distortion $D \leq \frac{\sigma^2}{(32)^2}$, then what is the minimum (lower bound) on the number of bits per sample that is required to transmit this signal?

Solution:

When
$$D \leq \frac{\sigma^2}{32^2}$$
, $R = \frac{1}{2} \log_2 \frac{\sigma^2}{D^2} \geq 5$ bits

d) How many bits per sample are required in order to achieve zero distortion?

Solution:

If
$$D = 0$$
 wanted, $R = \frac{1}{2} \log_2 \frac{\sigma^2}{D^2} \to \infty$

- \therefore An infinite number of bits is required for zero distortion, which is always impractical. Therefore, we generally consider lossy compression, i.e. distortion $\neq 0$.
- e) Describe how you would design a lossy coder for this signal assuming that your objective is to achieve a bit rate of approximately 8 bits per sample.

Solution:

We want $R \approx 8$ bits/sample, then $D \approx \frac{\sigma^2}{256^2}$

(iid samples) Clip to range
$$[-T, T]$$
 Quantization $Q(X_n)$ Entropy Coding bitstream

- 1) We first clip the source samples in the range [-T, T], where $T \gg \sigma$. For example, take 3σ ; then about 99% of the samples will be in $[-3\sigma, 3\sigma]$.
- 2) Uniform quantization: since the distortion for a uniform quantization is $\frac{1}{12}\Delta^2$, where Δ is the quantization step.

$$D = \frac{1}{12}\Delta^2 = \frac{\sigma^2}{256^2} \implies \Delta = \sqrt{12}\frac{\sigma}{256}$$

and $Q(X_n) = \text{round}\left(\frac{X_n}{\Delta}\right) = \text{round}\left(\frac{256X_n}{\sqrt{12}\sigma}\right)$

2

3) Entropy coding the quantized data, and get about 8 bits/sample.