Topics: Nonlinear filtering

Spring 2007 Final: Problem 5 (nonlinear filtering)

Consider an signal $Y_n = S_n + W_n$ where S_n is a unknown signal, W_n is i.i.d. Gaussian noise with mean 0 and variance 1.

Your job (should you choose to accept it) is to recover a good estimate of S_n by applying a function to a 5 point window about the location n. So the estimate is given by

$$\hat{S}_n = f(Z_n)$$

where

$$Z_n = [Y_{n-2}, Y_{n-1}, Y_n, Y_{n+1}, Y_{n+2}]^t$$
.

a) Assuming that $S_n = \mu$, where μ is a constant, then what is a good choice for the function $f(\cdot)$? Justify your answer.

Solution:

 $\widehat{S}_n = \frac{1}{5} \sum_{k=-2}^2 Y_{n+k}$ would be an appropriate choice. It should be noted that $E\left[\widehat{S}_n\right] = \mu$, and \widehat{S}_n is the MMSE estimator of μ based on points in the local window.

b) Assuming that S_n is a slowly varying function of n, then what is a good choice for the function $f(\cdot)$? Justify your answer.

Solution:

A low pass smoothing kernel that gives more emphasis to points that are close to the center for the local window would be an appropriate choice.

$$\therefore \widehat{S}_n = \sum_{k=-2}^2 g_k Y_{n+k}, \text{ where } g_k \text{ could be selected as } g_k = \begin{cases} ce^{-\frac{k^2}{\sigma^2}} & |k| \leq 2\\ 0 & \text{otherwise} \end{cases}$$

c) Assuming the S_n has the form

$$S_n = a_n + (10)b_n$$

where a_n is a slowly varying function of n, and b_n is i.i.d. with discrete probability density function $P\{b_n = 1\} = P\{b_n = -1\} = 0.001$ and $P\{b_n = 0\} = 0.998$, then what is a good choice for the function $f(\cdot)$? Justify your answer.

Solution:

 \widehat{S}_n could be estimated using the following algorithm:

Define
$$K = \{-2, -1, 0, 1, 2\}$$

$$k_m = \underset{k \in K}{\operatorname{arg\,min}}(Y_{n+k})$$

$$k_M = \underset{k \in K}{\operatorname{arg\,max}}(Y_{n+k})$$

$$R_n = \frac{1}{3} \sum_{k \in K \setminus \{k_m, k_M\}} Y_n + k$$
if $[(k_m == 0 \mid \mid k_M == 0) \&\& \mid R_n - Y_n \mid > T]$

$$\widehat{S}_n = Y_n$$
else
$$\widehat{S}_n = R_n$$

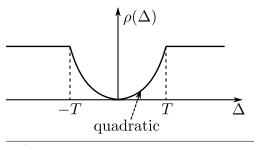
d) Assuming the S_n has the form

$$S_n = a_n + 10 \sum_{k=-\infty}^{\infty} b_k \text{pulse}_{10}(n-k)$$

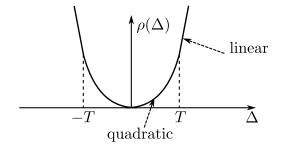
where a_n is a very slowly varying function of n, and b_n is i. i. d. with discrete probability density function $P\{b_n = 1\} = P\{b_n = -1\} = 0.001$ and $P\{b_n = 0\} = 0.998$, then what is a good choice for the function $f(\cdot)$? ¹ Justify your answer.

Solution:

$$\widehat{S}_n = \underset{\theta}{\operatorname{arg\,min}} \sum_{k=-2}^2 \rho(|\theta - Y_{n+k}|), \, \rho(\Delta) \text{ could be selected as follows:}$$



¹Note that pulse_N(n) = u(n) - u(n - N).



Spring 2006 Final: Problem 4 (M-estimators)

Consider the set of data $\{x_n\}_{n=0}^{N-1}$ for N odd. We would like to estimate a "central value" using a method known as M-estimation. To do this we compute the following function

$$\hat{\theta} = \arg\min_{\theta} \left\{ \sum_{n=0}^{N-1} \rho(x_n - \theta) \right\}$$

where ρ is a function with the properties that $\rho(\Delta) \geq 0$ and $\rho(-\Delta) = \rho(\Delta)$.

a) What function $\rho(\Delta)$ will result in the mean as shown below?

mean is
$$\hat{\theta} = \frac{1}{N} \sum_{i=0}^{N-1} x_i$$

Solution:

$$\rho(\Delta) = |\Delta|^2$$

b) What function $\rho(\Delta)$ will result in the median?

Solution:

$$\rho(\Delta) = |\Delta|$$

c) Select a function $\rho(\Delta)$ which usually produces an estimate close to the mean, but limits the influence of a single value of x_i .

Solution:

$$\rho(\Delta) = \begin{cases} |\Delta|^2 & \text{for } |\Delta| < T \\ |2T\Delta| - T^2 & \text{for } |\Delta| > T \end{cases}$$