Digital Halftoning

- Many image rendering technologies only have binary output. For example, printers can either "fire a dot" or not.
- Halftoning is a method for creating the illusion of continuous tone output with a binary device.
- Effective digital halftoning can substantially improve the quality of rendered images at minimal cost.

Thresholding

- Assume that the image falls in the range of 0 to 255.
- Apply a space varying threshold, T(i, j).

$$b(i,j) = \begin{cases} 255 & \text{if } X(i,j) > T(i,j) \\ 0 & \text{otherwise} \end{cases}.$$

- What is X(i, j)?
- Lightness
 - Larger \Rightarrow lighter
 - Used for display
- Absorptance
 - Larger \Rightarrow darker
 - Used for printing
- X(i, j) will generally be in units of absorptance.

Constant Threshold

- Assume that the image falls in the range of 0 to 255.
- $255 \Rightarrow Black \text{ and } 0 \Rightarrow White$
- The minimum squared error quantizer is a simple threshold

$$b(i,j) = \begin{cases} 255 & \text{if } X(i,j) > T \\ 0 & \text{otherwise} \end{cases}.$$

where T = 127.

• This produces a poor quality rendering of a continuous tone image.

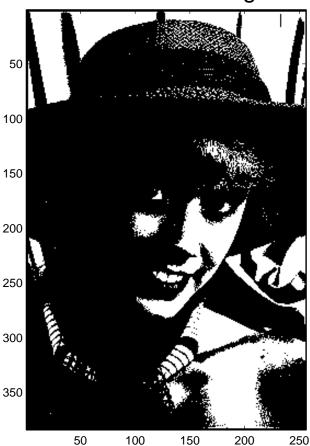
The Minimum Squared Error Solution

- Threshold each pixel
 - Pixel> 127 Fire ink
 - Pixel≤ 127 do nothing

Original Image

50 100 150 200 250 300 350 50 100 150 200 250

Thresholded Image

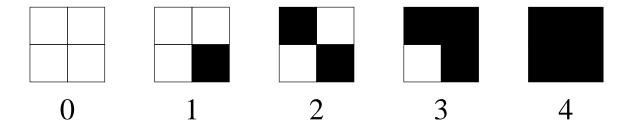


Ordered Dither

- For a constant gray level patch, turn the pixel "on" in a specified order.
- This creates the perception of continuous variations of gray.
- \bullet An $N \times N$ index matrix specifies what order to use.

$$I_2(i,j) = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

• Pixels are turned on in the following order.



Implementation of Ordered Dither via Thresholding

• The index matrix can be converted to a "threshold matrix" or "screen" using the following operation.

$$T(i,j) = 255 \frac{I(i,j) + 0.5}{N^2}$$

ullet The N imes N matrix can then be "tiled" over the image using periodic replication.

$$T(i \bmod N, j \bmod N)$$

• The ordered dither algorithm is then applied via thresholding.

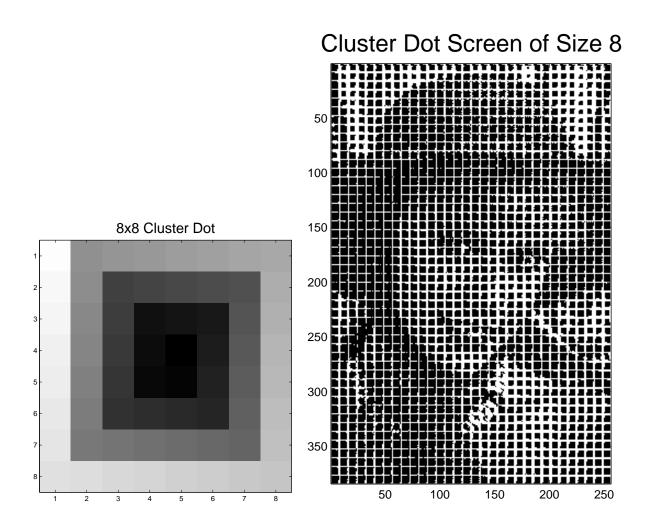
$$b(i,j) = \begin{cases} 255 & \text{if } X(i,j) > T(i \, \text{mod} N, j \, \text{mod} N) \\ 0 & \text{otherwise} \end{cases}$$

Clustered Dot Screens

- Definition: If the consecutive thresholds are located in spatial proximity, then this is called a "clustered dot screen.
- Example for 8×8 matrix:

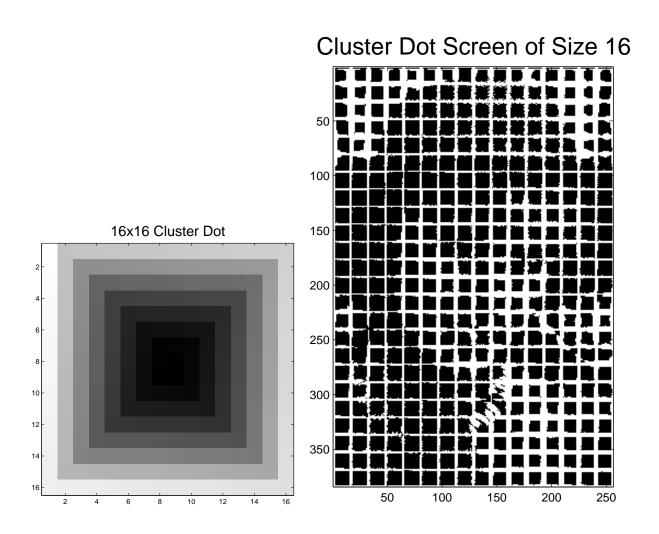
62	57	48	36	37	49	58	63
56	47	35	21	22	38	50	59
46	34	20	10	11	23	39	51
33	19	9	3	0	4	12	24
32	18	8	2	1	5	13	25
45	31	17	7	6	14	26	40
55	44	30	16	15	27	41	52
61	54	43	29	28	42	53	60

Example: 8×8 **Clustered Dot Screening**



• Only supports 65 gray levels.

Example: 16×16 **Clustered Dot Screening**



• Support a full 257 gray levels, but has half the resolution.

Properties of Clustered Dot Screens

- Requires a trade-off between number of gray levels and resolution.
- Relatively visible texture
- Relatively poor detail rendition
- Uniform texture across entire gray scale.
- Robust performance with non-ideal output devices
 - Non-additive spot overlap
 - Spot-to-spot variability
 - Noise

Dispersed Dot Screens

• Bayer's optimum index Matrix (1973) can be defined recursively.

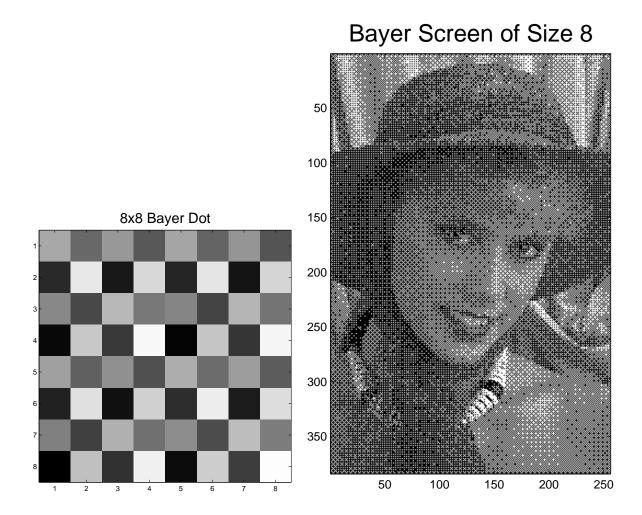
$$I_{2}(i,j) = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

$$I_{2n} = \begin{bmatrix} 4 * I_n + 1 & 4 * I_n + 2 \\ 4 * I_n + 3 & 4 * I_n \end{bmatrix}$$

Examples

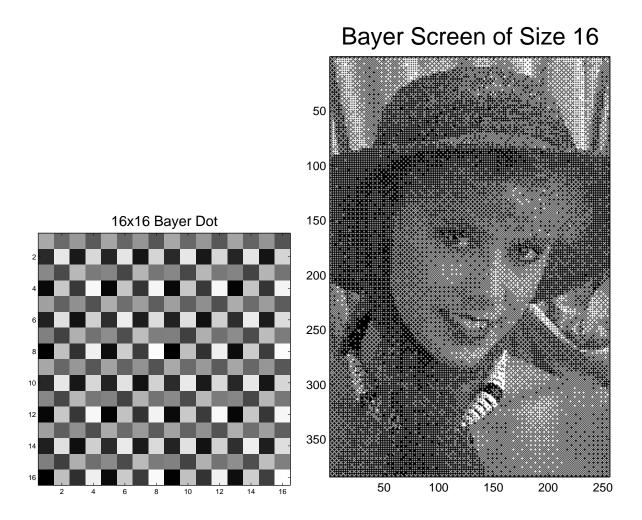
- Yields finer amplitude quantization over larger area.
- Retains good detail rendition within smaller area.

Example: 8×8 **Bayer Dot Screening**



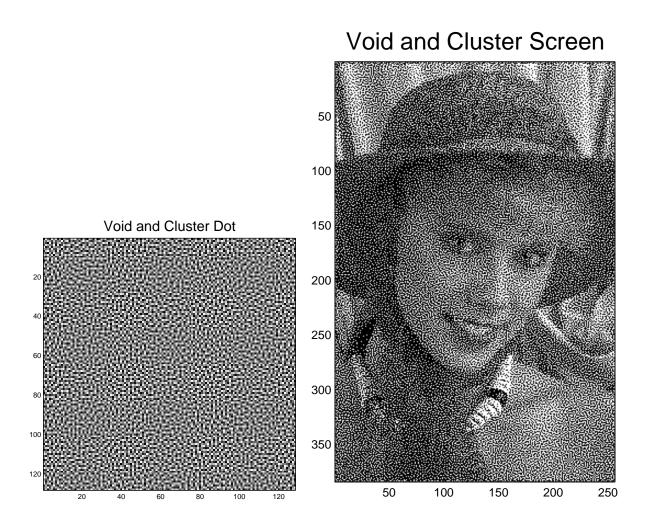
• Again, only 65 gray levels.

Example: 16×16 **Bayer Dot Screening**



- Doesn't look much different than the 8×8 case.
- No trade-off between resolution and number of gray levels.

Example: 128×128 Void and Cluster Screen (1989)



• Substantially improved quality over Bayer screen.

Properties of Dispersed Dot Screens

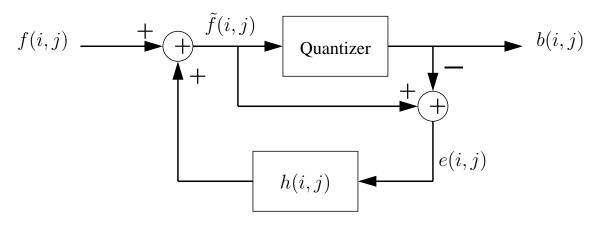
- Eliminate the trade-off between number of gray levels and resolution.
- Within any region containing K dots, the K thresholds should be distributed as uniformly as possible.
- Textures used to represent individual gray levels have low visibility.
- Improved detail rendition.
- Transitions between textures corresponding to different gray levels may be more visible.
- Not robust to non-ideal output devices
 - Requires stable formation of isolated single dots.

Error Diffusion

• Error Diffusion

- Quantizes each pixel using a neighborhood operation, rather than a simple pointwise operation.
- Moves through image in raster order, quantizing the result, and "pushing" the error forward.
- Can produce better quality images than is possible with screens.

Filter View of Error Diffusion



• Equations are

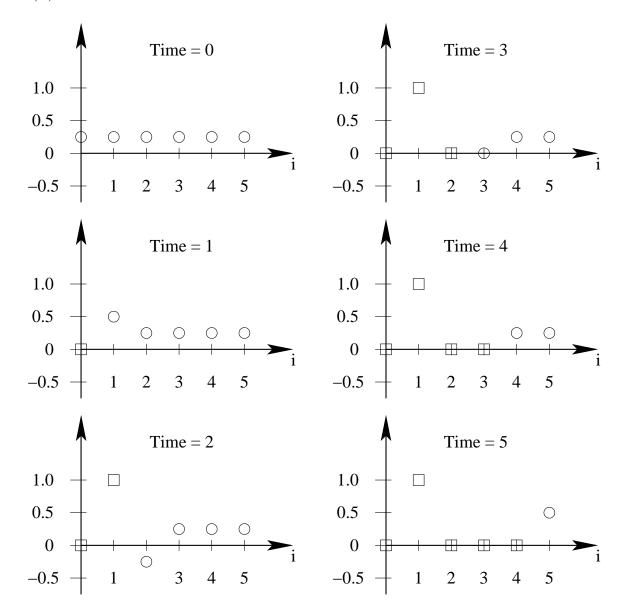
$$\begin{split} b(i,j) &= \begin{cases} 255 & \text{if } \tilde{f}(i,j) > T \\ 0 & \text{otherwise} \end{cases} \\ e(i,j) &= \tilde{f}(i,j) - b(i,j) \\ \tilde{f}(i,j) &= f(i,j) + \sum_{k,l \in S} h(k,l) e(i-k,j-l) \end{split}$$

Parameters

- Threshold is typically T = 127.
- -h(k, l) are typically chosen to be positive and sum to 1

1-D Error Diffusion Example

- $\tilde{f}(i) \Rightarrow$ circles
- $b(i) \Rightarrow boxes$



Two Views of Error Diffusion

- Two mathematically equivalent views of error diffusion
 - Pulling errors forward
 - Pushing errors ahead
- Pulling errors forward
 - More similar to common view of IIR filter
 - Has advantages for analysis
- Pushing errors ahead
 - Original view of error diffusion
 - Can be more easily extended to important cases when weights area time/space varying

ED: Pulling Errors Forward

- 1. For each pixel in the image (in raster order)
 - (a) Pull error forward

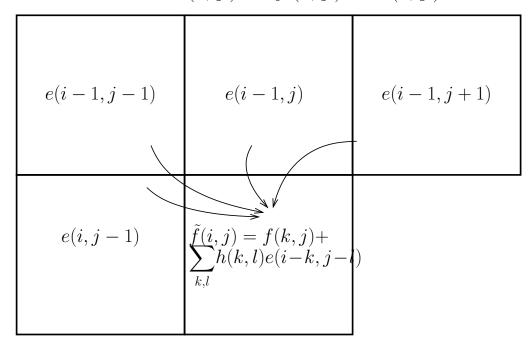
$$\tilde{f}(i,j) = f(i,j) + \sum_{k,l \in S} h(k,l)e(i-k,j-l)$$

(b) Compute binary output

$$b(i,j) = \begin{cases} 255 & \text{if } \tilde{f}(i,j) > T \\ 0 & \text{otherwise} \end{cases}$$

(c) Compute pixel's error

$$e(i,j) = \tilde{f}(i,j) - b(i,j)$$



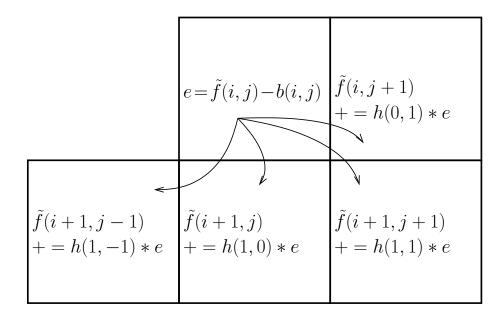
2. Display binary image b(i, j)

ED: Pushing Errors Ahead

- 1. Initialize $\tilde{f}(i,j) \leftarrow f(i,j)$
- 2. For each pixel in the image (in raster order)
 - (a) Compute

$$b(i,j) \ = \ \left\{ \begin{array}{ll} 255 \ \ \text{if} \ \tilde{f}(i,j) > T \\ 0 \ \ \ \text{otherwise} \end{array} \right.$$

(b) Diffuse error forward using the following scheme



3. Display binary image b(i, j)

Commonly Used Error Diffusion Weights

• Floyd and Steinberg (1976)

		7/16
3/16	5/16	1/16

• Jarvis, Judice, and Ninke (1976)

			7/48	5/48
3/48	5/48	7/48	5/48	3/48
1/48	3/48	5/48	3/48	1/48

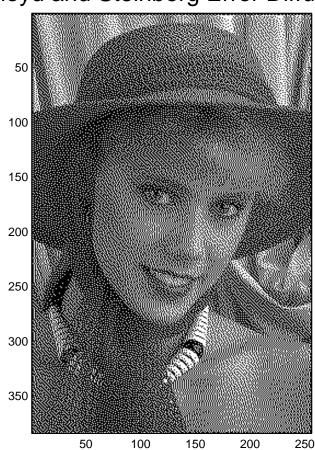
Floyd Steinberg Error Diffusion (1976)

• Process pixels in neighborhoods by "diffusing error" and quantizing.

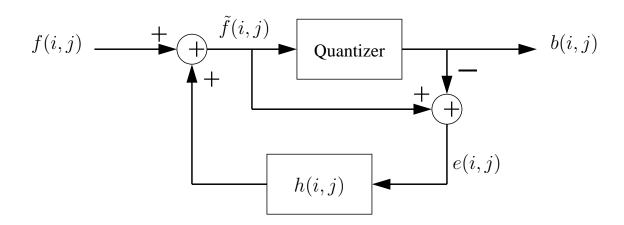
Original Image

50 100 200 250 300 350 50 100 150 200 250

Floyd and Steinberg Error Diffusion



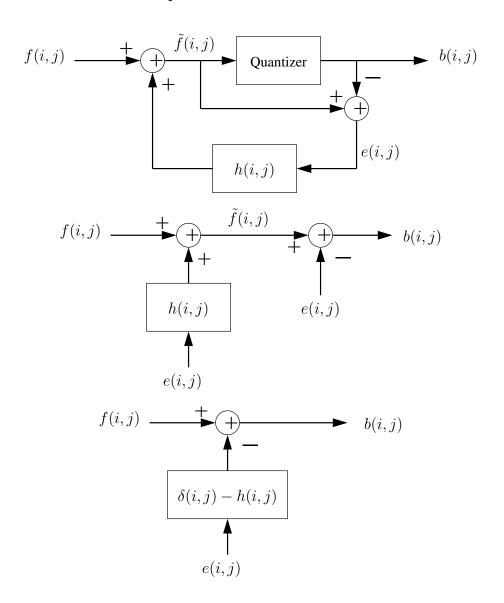
Quantization Error Modeling for Error Diffusion



- Quantization error is commonly assumed to be:
 - Uniformly distributed on [-0.5, 0.5]
 - Uncorrelated in space
 - Independent of signal $\tilde{f}(i,j)$
 - $-E\left[e(i,j)\right] = 0$
 - $-E[e(i,j)e(i+k,j+l)] = \frac{\delta(k,l)}{12}$

Modified Error Diffusion Block Diagram

• The error diffusion block diagram can be rearranged to facilitate error analysis



Error Diffusion Spectral Analysis

• So we see that

$$b(i,j) = f(i,j) - (\delta(i,j) - h(i,j)) * e(i,j)$$

rewriting ...

$$f(i,j) - b(i,j) = \underbrace{(\delta(i,j) - h(i,j))}_{\mbox{high pass filter}} * \underbrace{e(i,j)}_{\mbox{quantization}} *$$

- Display error is f(i, j) b(i, j)
- Quantization error is e(i, j)
- Display error is a high pass version of quantization error
- Human visual system is less sensitive to high spatial frequencies

Error Image in Floyd Steinberg Error Diffusion

• Process pixels in neighborhoods by "diffusing error" and quantizing.



Correlation of Quantization Error and Image

- Quantizer error spectrum is unknown
- Quantizer error model

$$\begin{split} E(\mu,\nu) &= \rho F(\mu,\nu) + R(\mu,\nu) \\ &= \rho(\mathrm{Image}) + (\mathrm{Residual}) \end{split}$$

– ρ represents correlation between quantizer error and image

Weight	ρ
1-D	0.0
Floyd and Steinberg	0.55
Jarvis, Judice, and Ninke	0.8

• Using this model, we have

$$\begin{split} B(\mu,\nu) \ = \ F(\mu,\nu) - (1-H(\mu,\nu)) \, E(\mu,\nu) \\ \\ = \ \left[1-\rho \left(1-H(\mu,\nu)\right)\right] F(\mu,\nu) + \text{noise} \end{split}$$

• This is unsharp masking

Additional Topics

- Pattern Printing
- Dot Profiles
- Halftone quality metrics
 - Radially averaged power spectrum (RAPS)
 - Weighted least squares with HVS constrast sensitivity function
 - Blue noise dot patterns
- Error diffusion
 - Unsharp masking effects
 - Serpentine scan patterns
 - Threshold dithering
 - TDED
- Least squared halftoning
- Printing and display technologies
 - Electrophotographic
 - Inkjet