EE 637 Midterm I
February 20, Spring 2015
Name: (4 pt) \qquad
Instructions:

- This is a 50 minute exam containing three problems.
- You may only use your brain and a pencil (or pen) and the included "Fact Sheet" to complete this exam.
- You may not use or have access to your book, notes, any supplementary reference, a calculator, or any communication device including a cell-phone or computer.
- You may not communicate with any person other than the official proctor during the exam.

Good Luck.

Fact Sheet

- Function definitions

$$
\begin{aligned}
& \operatorname{rect}(t) \triangleq \begin{cases}1 & \text { for }|t|<1 / 2 \\
0 & \text { otherwise }\end{cases} \\
& \Lambda(t) \triangleq \begin{cases}1-|t| & \text { for }|t|<1 \\
0 & \text { otherwise }\end{cases} \\
& \operatorname{sinc}(t) \triangleq \frac{\sin (\pi t)}{\pi t}
\end{aligned}
$$

- CTFT

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \\
x(t) & =\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
\end{aligned}
$$

- CTFT Properties

$$
\begin{gathered}
x(-t) \stackrel{C T F^{T}}{\Leftrightarrow} X(-f) \\
x\left(t-t_{0}\right) \stackrel{C T F^{T}}{\Leftrightarrow} X(f) e^{-j 2 \pi f t_{0}} \\
x(a t) \stackrel{C T F T}{\Leftrightarrow} \frac{1}{|a|} X(f / a) \\
X(t) \stackrel{C T F^{T}}{\Leftrightarrow} x(-f) \\
x(t) e^{j 2 \pi f_{0} t} \stackrel{C T F T}{\Leftrightarrow} X\left(f-f_{0}\right) \\
x(t) y(t) \stackrel{C T F^{T}}{\Leftrightarrow} X(f) * Y(f) \\
x(t) * y(t) \stackrel{C T F T}{\Leftrightarrow} X(f) Y(f) \\
\int_{-\infty}^{\infty} x(t) y^{*}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(f) Y^{*}(f) d f
\end{gathered}
$$

- CTFT pairs

$$
\begin{aligned}
& \operatorname{sinc}(t) \stackrel{C T F T}{\Leftrightarrow} \operatorname{rect}(f) \\
& \operatorname{rect}(t) \stackrel{C T F T}{\Leftrightarrow} \operatorname{sinc}(f)
\end{aligned}
$$

For $a>0$

$$
\frac{1}{(n-1)!} t^{n-1} e^{-a t} u(t) \stackrel{C T F T}{\Leftrightarrow} \frac{1}{(j 2 \pi f+a)^{n}}
$$

- CSFT

$$
\begin{aligned}
F(u, v) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y \\
f(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v
\end{aligned}
$$

Name:
Problem 1.(32pt)
Consider the following 1D system with input $x(n)$ and output $y(n)$.

$$
y(n)=x(n)+\lambda\left(x(n)-\frac{1}{3} \sum_{k=-1}^{1} x(n-k)\right) .
$$

a) Is this a linear system? Is this a space invariant system?
b) Calculate and sketch the impulse response, $h(n)$ for $\lambda=0.5$.
c) Calculate and sketch the frequency response, $H\left(e^{j \omega}\right)$ for $\lambda=0.5$.
d) Describe how the filter behaves when λ is positive and large.

Name:

Name:

Problem 2.(32pt)
Consider the 2D discrete space signal $x(m, n)$ with the DSFT of $X\left(e^{j \mu}, e^{j \nu}\right)$ given by

$$
X\left(e^{j \mu}, e^{j \nu}\right)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m, n) e^{-j(m \mu+n \nu)}
$$

Then define

$$
\begin{aligned}
& p_{0}(n)=\sum_{m=-\infty}^{\infty} x(m, n) \\
& p_{1}(m)=\sum_{n=-\infty}^{\infty} x(m, n)
\end{aligned}
$$

with corresponding DTFT given by

$$
\begin{aligned}
& P_{0}\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} p_{0}(n) e^{-j n \omega} \\
& P_{1}\left(e^{j \omega}\right)=\sum_{m=-\infty}^{\infty} p_{1}(m) e^{-j m \omega}
\end{aligned}
$$

a) Derive an expression for $P_{0}\left(e^{j \omega}\right)$ in terms of $X\left(e^{j \mu}, e^{j \nu}\right)$.
b) Derive an expression for $P_{1}\left(e^{j \omega}\right)$ in terms of $X\left(e^{j \mu}, e^{j \nu}\right)$.
c) Find a function $x(m, n)$ that is not zero everywhere such that $p_{0}(n)=p_{1}(m)=0$ for all m and n.
d) Do the functions $p_{0}(n)$ and $p_{1}(m)$ together contain sufficient information to uniquely reconstruct the function $x(m, n)$? Justify your answer.

Name:

Name:
Problem 3.(32pt)
Let $x(t)=\operatorname{sinc}(t / a)$ for some positive constant a, and let $y(n)=x(n T)$ where $f_{s}=1 / T$ is the sampling frequency of the system. Further assume that a has units of $s e c, T$ has units of $s e c$, and f_{s} has units of $H z=s e c^{-1}$.
a) Calculate and sketch $X(f)$, the CTFT of $x(t)$.
b) Calculate $Y\left(e^{j \omega}\right)$, the DTFT of $y(n)$.
c) What is the minimum sampling frequency, f_{s}, that ensures perfect reconstruction of the signal?
d) Sketch the function $Y\left(e^{j \omega}\right)$ on the interval $[-\pi, \pi]$ when $T=a$.
e) Sketch the function $Y\left(e^{j \omega}\right)$ on the interval $[-\pi, \pi]$ when $T=\frac{5 a}{4}$.

Name:

