EE 637 Midterm I
February 21, Spring 2014

Name: (4 pt) \qquad
Instructions:

- This is a 50 minute exam containing three problems.
- You may only use your brain and a pencil (or pen) and the included "Fact Sheet" to complete this exam.
- You may not use or have access to your book, notes, any supplementary reference, a calculator, or any communication device including a cell-phone or computer.
- You may not communicate with any person other than the official proctor during the exam.

Good Luck.

Fact Sheet

- Function definitions

$$
\begin{aligned}
& \operatorname{rect}(t) \triangleq \begin{cases}1 & \text { for }|t|<1 / 2 \\
0 & \text { otherwise }\end{cases} \\
& \Lambda(t) \triangleq \begin{cases}1-|t| & \text { for }|t|<1 \\
0 & \text { otherwise }\end{cases} \\
& \operatorname{sinc}(t) \triangleq \frac{\sin (\pi t)}{\pi t}
\end{aligned}
$$

- CTFT

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \\
x(t) & =\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
\end{aligned}
$$

- CTFT Properties

$$
\begin{gathered}
x(-t) \stackrel{C T F^{T}}{\Leftrightarrow} X(-f) \\
x\left(t-t_{0}\right) \stackrel{C T F^{T}}{\Leftrightarrow} X(f) e^{-j 2 \pi f t_{0}} \\
x(a t) \stackrel{C T F T}{\Leftrightarrow} \frac{1}{|a|} X(f / a) \\
X(t) \stackrel{C T F^{T}}{\Leftrightarrow} x(-f) \\
x(t) e^{j 2 \pi f_{0} t} \stackrel{C T F T}{\Leftrightarrow} X\left(f-f_{0}\right) \\
x(t) y(t) \stackrel{C T F^{T}}{\Leftrightarrow} X(f) * Y(f) \\
x(t) * y(t) \stackrel{C T F T}{\Leftrightarrow} X(f) Y(f) \\
\int_{-\infty}^{\infty} x(t) y^{*}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(f) Y^{*}(f) d f
\end{gathered}
$$

- CTFT pairs

$$
\begin{aligned}
& \operatorname{sinc}(t) \stackrel{C T F T}{\Leftrightarrow} \operatorname{rect}(f) \\
& \operatorname{rect}(t) \stackrel{C T F T}{\Leftrightarrow} \operatorname{sinc}(f)
\end{aligned}
$$

For $a>0$

$$
\frac{1}{(n-1)!} t^{n-1} e^{-a t} u(t) \stackrel{C T F T}{\Leftrightarrow} \frac{1}{(j 2 \pi f+a)^{n}}
$$

- CSFT

$$
\begin{aligned}
F(u, v) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y \\
f(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v
\end{aligned}
$$

Name:

Problem 1.(32pt)

Consider the following 2-D LSI systems. The first system (S1) has input $x(m, n)$ and output $y(m, n)$, and the second system (S2) has input $y(m, n)$ and output $z(m, n)$.

$$
\begin{align*}
& y(m, n)=a y(m, n-1)+x(m, n) \tag{S1}\\
& z(m, n)=b z(m-1, n)+y(m, n) \tag{S2}
\end{align*}
$$

The third system (S3) is formed by the composition of (S1) and (S2) with input $x(m, n)$ and output $z(m, n)$ and impulse response $h_{3}(m, n)$.
a) Calculate the 2-D impulse response, $h_{1}(m, n)$, of the first system (S1).
b) Calculate the 2-D impulse response, $h_{2}(m, n)$, of the second system (S2).
c) Calculate the 2-D impulse response, $h_{3}(m, n)$, of the complete system (S3).
d) Calculate the 2-D transfer function, $H_{1}\left(z_{1}, z_{2}\right)$, of the first system (S1).
e) Calculate the 2-D transfer function, $H_{3}\left(z_{1}, z_{2}\right)$, of the first system (S3).

Name:

Name:

Problem 2.(35pt)
Consider a function, $f(x, y)$, with a CSFT of $F(u, v)$, and imagine that we have two pieces of information about the function.

- First, we know its projection at angle $\theta=0$ is given by:

$$
p_{0}(t)=\int_{-\infty}^{\infty} f(t, y) d y
$$

- Second, we know that it is rotationally invariant so that for all θ,

$$
f(x, y)=f\left(\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) .
$$

Furthermore, define the CTFT of the projection as

$$
P_{0}(\rho)=\int_{-\infty}^{\infty} p_{0}(t) e^{-j 2 \pi \rho t} d t
$$

a) Derive an expression for $P_{0}(\rho)$ in terms of $F(u, v)$.
b) Derive an expression for $F(u, v)$ in terms of $P_{0}(\rho)$.
c) Is it possible to exactly reconstruct $f(x, y)$ from these two pieces of information? If so, then how? If not, then why not?
d) Derive an expression for $f(x, y)$ when $p_{0}(t)=\operatorname{sinc}(t)$.

Name:

Name:
Problem 3.(32pt)
Consider the discrete-time LTI system with input $x(n)$ and output $y(n)$ given by

$$
y(n)=\sum_{k=-\infty}^{\infty} h(n-k) x(k)
$$

where

$$
h(n)=T \operatorname{sinc}(n T) .
$$

a) Calculate a closed form expression for the frequency response, $H\left(e^{j \omega}\right)$, of the LTI system. (Hint: You can use the sampling formula.)
b) Sketch the function, $H\left(e^{j \omega}\right)$, on the interval $[-2 \pi, 2 \pi]$ for $T=1 / 2$.

Also sketch it for $T=1$ and $T=3 / 2$.
c) Sketch the impulse response, $h(n)$, on the interval $n=-5, \cdots,+5$ for $T=1 / 2$. Also sketch it for $T=1$ and $T=3 / 2$.
d) If you would like to design a discrete-time filter with a cut-off frequency of ω_{c}, how should T be chosen?
e) Calculate the $\sum_{n=-\infty}^{\infty} h(n)$ when $|T|<1$.

Name:

