### **Chromaticity Coordinates**

- $\bullet$  Tristimulus values X, Y, Z specify a color's:
  - Lightness light or dark
  - Hue red, orange, yellow, green, blue, purple
  - Saturation pink-red; pastel-fluorescent; baby bluedeep blue
- The *chromaticity* specifies the hue and saturation, but not the lightness.

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$
$$z = \frac{Z}{X + Y + Z}$$

### **Properties of Chromaticity Coordinates**

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$
$$z = \frac{Z}{X + Y + Z}$$

- x + y + z = 1 Third component can always be computed from first two.
- $\bullet$  Typically, (x, y) are specified
- Let  $\alpha$  be any positive constant. Then (X,Y,Z) and  $(\alpha X,\alpha Y,\alpha Z)$  have the same chromaticity coordinates.
- Projection property: Straight lines in XYZ map to straight lines in (x, y).

### **Projection Property of Chromaticity Coordinates**

• Fact: Straight lines in (X, Y, Z) space project to straight lines in (x, y) chromaticity space.

#### **Proof:**

- Let  $C_1 = (X_1, Y_1, Z_1)$  and  $C_2 = (X_2, Y_2, Z_2)$  be two different colors, and let  $C_3 = (X_3, Y_3, Z_3)$  fall on a line connecting  $C_1$  and  $C_2$ .
- In this case, we know that

$$C_3 = \alpha C_1 + \beta C_2$$

$$(X_3, Y_3, Z_3) = \alpha(X_1, Y_1, Z_1) + \beta(X_2, Y_2, Z_2)$$

where

$$\alpha + \beta = 1$$

– In order to show that  $(x_3, y_3)$  falls on a straight line connecting  $(x_1, y_1)$  and  $(x_2, y_2)$ , we must show that

$$(x_3, y_3) = \alpha'(x_1, y_1) + \beta'(x_2, y_2)$$

where

$$\alpha' + \beta' = 1$$

### **Projection Property (2)**

$$(x_3, y_3)$$

$$= \left(\frac{\alpha X_1 + \beta X_2}{X_3 + Y_3 + Z_3}, \frac{\alpha Y_1 + \beta Y_2}{X_3 + Y_3 + Z_3}\right)$$

$$= \left(\frac{\alpha X_1}{X_3 + Y_3 + Z_3}, \frac{\alpha Y_1}{X_3 + Y_3 + Z_3}\right)$$

$$+ \left(\frac{\beta X_2}{X_3 + Y_3 + Z_3}, \frac{\beta Y_2}{X_3 + Y_3 + Z_3}\right)$$

$$= \frac{X_1 + Y_1 + Z_1}{X_3 + Y_3 + Z_3} \left(\frac{\alpha X_1}{X_1 + Y_1 + Z_1}, \frac{\alpha Y_1}{X_1 + Y_1 + Z_1}\right)$$

$$+ \frac{X_2 + Y_2 + Z_2}{X_3 + Y_3 + Z_3} \left(\frac{\beta X_2}{X_2 + Y_2 + Z_2}, \frac{\beta Y_2}{X_2 + Y_2 + Z_2}\right)$$

$$= \alpha \frac{X_1 + Y_1 + Z_1}{X_3 + Y_3 + Z_3} (x_1, y_1) + \beta \frac{X_2 + Y_2 + Z_2}{X_3 + Y_3 + Z_3} (x_2, y_2)$$

$$= \alpha'(x_1, y_1) + \beta'(x_2, y_2)$$

### **Projection Property (3)**

• Then  $\alpha'$  and  $\beta'$  are given by

$$\alpha' = \frac{\alpha(X_1 + Y_1 + Z_1)}{\alpha(X_1 + Y_1 + Z_1) + \beta(X_2 + Y_2 + Z_2)}$$

$$\beta' = \frac{\beta(X_2 + Y_2 + Z_2)}{\alpha(X_1 + Y_1 + Z_1) + \beta(X_2 + Y_2 + Z_2)}$$

So we have that

$$\alpha' + \beta' = 1$$

**QED** 

### **Chromaticity Diagrams**

- Compute the chromaticity of a pure spectral line at wavelength  $\lambda_0$ .
- $\bullet$  The XYZ values are given by

$$X = \int_0^\infty \delta(\lambda - \lambda_0) x_0(\lambda) d\lambda = x_0(\lambda_0)$$

$$Y = \int_0^\infty \delta(\lambda - \lambda_0) y_0(\lambda) d\lambda = y_0(\lambda_0)$$

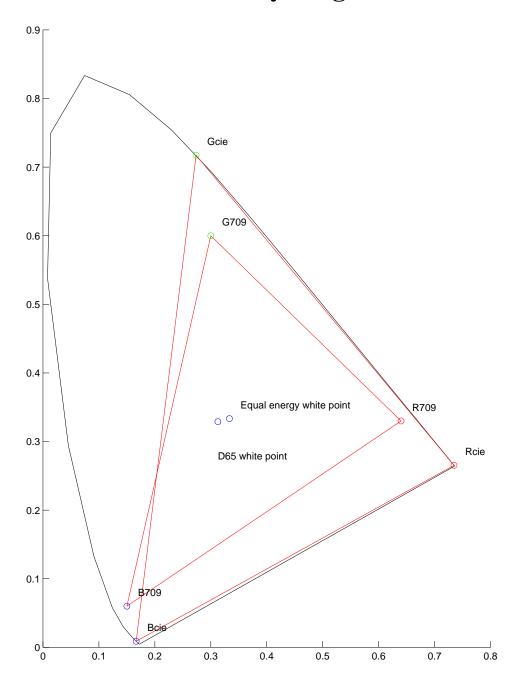
$$Z = \int_0^\infty \delta(\lambda - \lambda_0) z_0(\lambda) d\lambda = z_0(\lambda_0)$$

ullet So the chromaticity of a spectral line at wavelength  $\lambda$  is given by

$$(x,y) = \left(\frac{x_0(\lambda)}{x_0(\lambda) + y_0(\lambda) + z_0(\lambda)}, \frac{y_0(\lambda)}{x_0(\lambda) + y_0(\lambda) + z_0(\lambda)}\right)$$

• Plot this parametric curve in (x, y) as a function of  $\lambda$ .

# **Chromaticity Diagram**



• Horse shoe shape results form XYZ color matching functions

### **Chromaticity Diagrams**

- Linear combinations of colors form straight lines.
- Any color in the interior (i.e. convex hull) of the "horse shoe" can be achieved through the linear combination of two pure spectral colors.
- The straight line connecting red and blue is referred to as "line of purples".
- RGB primaries form a triangular color gamut.
- The color white falls in the center of the diagram.

#### What is White Point?

- What is white point?
- There are three major functions for the concept of white point.
  - Calibration: Absolute scaling of (r, g, b) values required for calibrated image data. This determines the color associated with (r, g, b) = (1, 1, 1).
  - Color constancy: Color of illuminant in scene. By changing white point, one can partially compensate for changes due to illumination color. (camcorders)
  - Gamut mapping: Color of paper in printing applications. Color of paper is brightest white usually possible. Should a color photocopier change the color of the paper? Usually no.
- We will focus on use of white point for calibration.

### **Defining White Point**

• Ideally white point specifies the spectrum of the color white.

$$I_w(\lambda)$$

• This specifies XYZ coordinates

$$X_w = \int_0^\infty x_0(\lambda) I_w(\lambda) d\lambda$$

$$Y_w = \int_0^\infty y_0(\lambda) I_w(\lambda) d\lambda$$

$$Z_w = \int_0^\infty z_0(\lambda) I_w(\lambda) d\lambda$$

which in turn specifies chromaticity components

$$x_w = \frac{X_w}{X_w + Y_w + Z_w}$$
$$y_w = \frac{Y_w}{X_w + Y_w + Z_w}$$

- Comments
  - White point is usually specified in chromaticity.
  - Knowing  $(x_w, y_w)$  does not determine  $I_w(\lambda)$ .

### **Typical White Points**

• Equal energy white:

$$I_{EE}(\lambda) = 1$$
  
 $(x_{EE}, y_{EE}, z_{EE}) = (1/3, 1/3, 1/3)$ 

• D65 illuminant (specified for PAL):

$$I_{65}(\lambda) = \text{Natural Sun Light}$$
  $(x_{65}, y_{65}, z_{65}) = (0.3127, 0.3290, 0.3583)$ 

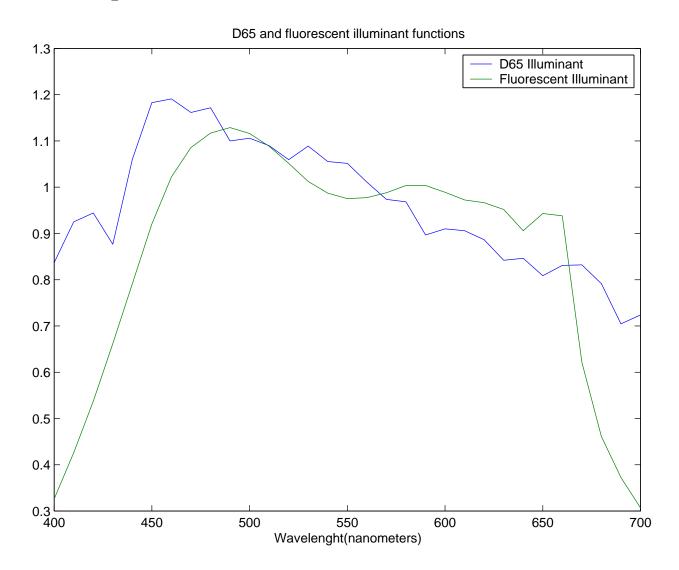
• C illuminant (specified for NTSC):

$$I_c(\lambda) = \text{not defined}$$
   
  $(x_c, y_c, z_c) = (0.310, 0.316, 0.374)$ 

- Comments:
  - Equal energy white is not commonly used.
  - -C was the original standard for NTSC video.
  - D65 has become the dominant standard.
  - D65 corresponds to a color temperature of  $6500^{\circ}$ K.

# **Two Example Illuminants**

• Examples of D65 and Fluorescent Illuminants.



### **Equal Energy White Point Correction**

• Color matching function assumes unit area normalization.

$$1 = \int_0^\infty r_0(\lambda) d\lambda$$
$$1 = \int_0^\infty g_0(\lambda) d\lambda$$
$$1 = \int_0^\infty b_0(\lambda) d\lambda$$

• Therefore,  $I_{EE}(\lambda) = 1$  results in

$$r_{lin} = \int_0^\infty I_{EE}(\lambda) r_0(\lambda) d\lambda = 1$$

$$g_{lin} = \int_0^\infty I_{EE}(\lambda) g_0(\lambda) d\lambda = 1$$

$$b_{lin} = \int_0^\infty I_{EE}(\lambda) b_0(\lambda) d\lambda = 1$$

• Equal energy white  $\Rightarrow (r_{lin}, g_{lin}, b_{lin}) = (1, 1, 1)$ 

#### **White Point Correction**

 White point corrected/gamma corrected data is compute as:

$$\widetilde{r} \stackrel{\triangle}{=} \left( \frac{r_{lin}}{r_{wp}} \right)^{1/\gamma}$$
 $\widetilde{g} \stackrel{\triangle}{=} \left( \frac{g_{lin}}{g_{wp}} \right)^{1/\gamma}$ 
 $\widetilde{b} \stackrel{\triangle}{=} \left( \frac{b_{lin}}{b_{wn}} \right)^{1/\gamma}$ 

• So,

$$(\tilde{r}, \tilde{g}, \tilde{b}) = (1, 1, 1) \Rightarrow (r_{lin}, g_{lin}, b_{lin}) = (r_{wp}, g_{wp}, b_{wp})$$
  
where  $(r_{wp}, g_{wp}, b_{wp})$  is the desired white point.

### **Typical RGB Color Primaries**

• NTSC standard primaries:

$$(x_r, y_r) = (0.67, 0.33)$$
  
 $(x_g, y_g) = (0.21, 0.71)$   
 $(x_b, y_b) = (0.14, 0.08)$ 

- These color primaries are not typically used anymore.
- PAL standard primaries:

$$(x_r, y_r) = (0.64, 0.33)$$
  
 $(x_g, y_g) = (0.29, 0.60)$   
 $(x_b, y_b) = (0.15, 0.06)$ 

- PAL is the TV standard used in Europe
- ITU-R BT.709 standard primaries:

$$(x_r, y_r, z_r) = (0.6400, 0.3300, 0.0300)$$
  
 $(x_g, y_g, z_g) = (0.3000, 0.6000, 0.1000)$   
 $(x_b, y_b, z_b) = (0.1500, 0.0600, 0.7900)$ 

- Brighter than NTSC primaries.
- Most commonly used primary colors for display monitors and TV's.

## **Example: NTSC Color Primaries With EE White Point**

• We need to find a transformation M so that

$$\left[egin{array}{c} X \ Y \ Z \end{array}
ight] = \mathbf{M} \left[egin{array}{c} r_{lin} \ g_{lin} \ b_{lin} \end{array}
ight]$$

- $(r_{lin}, g_{lin}, b_{lin})$  are linear (i.e.  $\gamma = 1$ ).
- Columns of M are proportional to color primaries.
- Rows of M sum to  $1 \Rightarrow$  equal energy white point.
- Therefore, M must have the following form for some  $\alpha_1$ ,  $\alpha_2$ , and  $\alpha_3$ .

$$\mathbf{M} = \begin{bmatrix} 0.67 & 0.21 & 0.14 \\ 0.33 & 0.71 & 0.08 \\ 0.00 & 0.08 & 0.78 \end{bmatrix} \begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{bmatrix}$$

# **Example Continued: NTSC Color Primaries With EE**White Point

• In order to have an EE white point, the values of  $\alpha_1$ ,  $\alpha_2$ , and  $\alpha_3$  must satisfy the equation.

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \mathbf{M} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0.67 & 0.21 & 0.14 \\ 0.33 & 0.71 & 0.08 \\ 0.00 & 0.08 & 0.78 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

- This results in  $[\alpha_1, \alpha_2, \alpha_3] = (0.9867, 0.8148, 1.1985)$ .
- Substituting in  $\alpha_1$ ,  $\alpha_2$ , and  $\alpha_3$  yields:

$$\mathbf{M} = \begin{bmatrix} 0.67 & 0.21 & 0.14 \\ 0.33 & 0.71 & 0.08 \\ 0.00 & 0.08 & 0.78 \end{bmatrix} \begin{bmatrix} 0.9867 & 0 & 0 \\ 0 & 0.8148 & 0 \\ 0 & 0 & 1.1985 \end{bmatrix}$$

$$= \begin{bmatrix} 0.6611 & 0.1711 & 0.1678 \\ 0.3256 & 0.5785 & 0.0959 \\ 0 & 0.0652 & 0.9348 \end{bmatrix}$$

### **Example: NTSC Color Primaries With C White Point**

• Find a transformation M so that

$$\left[egin{array}{c} X \ Y \ Z \end{array}
ight] = \mathbf{M} \left[egin{array}{c} r_{lin} \ g_{lin} \ b_{lin} \end{array}
ight]$$

where

- Columns of M are proportional to color primaries.
- Rows of M sum to  $[0.310, 0.316, 0.374] \times constant$ .
- Middle rows of M sum to  $1 \Rightarrow$  unit luminance.
- Solve the equation

$$\frac{1}{0.316} \begin{bmatrix} 0.310 \\ 0.316 \\ 0.374 \end{bmatrix} = \begin{bmatrix} 0.9810 \\ 1 \\ 1.1835 \end{bmatrix} = \begin{bmatrix} 0.67 & 0.21 & 0.14 \\ 0.33 & 0.71 & 0.08 \\ 0.00 & 0.08 & 0.78 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

• This results in  $[\alpha_1, \alpha_2, \alpha_3] = (0.9060, 0.8259, 1.4327)$ , and

$$\mathbf{M} = \begin{bmatrix} 0.67 & 0.21 & 0.14 \\ 0.33 & 0.71 & 0.08 \\ 0.00 & 0.08 & 0.78 \end{bmatrix} \begin{bmatrix} 0.9060 & 0 & 0 \\ 0 & 0.8259 & 0 \\ 0 & 0 & 1.4327 \end{bmatrix}$$

$$= \begin{bmatrix} 0.6070 & 0.1734 & 0.2006 \\ 0.2990 & 0.5864 & 0.1146 \\ 0 & 0.0661 & 1.1175 \end{bmatrix}$$

# The International Color Consortium (ICC) (www.color.org)

- Sets industry standards for color management
- ICC color management standard
  - Uses point to point transformation techniques to calibrate color capture and rendering devices with the best possible fidelity.
  - Based on Apples ColorSync system.
  - Requires color profiles for each input and output device.
  - Requires that each image have an associated color profile.
  - But most image file formats do not support color profile embedding.
  - Difficult for non-professionals to use.
- ICC color management system does not specify a single universal color space for interchange of data.

# sRGB: The New Industry Color Standard (www.color.org/sRGB.html)

- Industry standard color space proposed by Hewlett-Packard and Microsoft through the ICC organization.
- Defines a standard color space for images in RGB format.
- Basic sRGB standard:
  - Gamma corrected format with  $\gamma=2.2$ . (approximately)
  - 709 Primaries
  - D65 white point

### **Converting From sRGB to XYZ**

• First convert from gamma corrected to linear sRGB. (approximate)

$$r_{lin} = \left(\frac{\tilde{r}}{255}\right)^{2.2}$$

$$g_{lin} = \left(\frac{\tilde{g}}{255}\right)^{2.2}$$

$$b_{lin} = \left(\frac{\tilde{b}}{255}\right)^{2.2}$$

- Make sure that  $(r_{lin}, g_{lin}, b_{lin})$  are stored using floating point precision.
- Then convert from linear sRGB to XYZ using linear transformation.

$$\left[egin{array}{c} X \ Y \ Z \end{array}
ight] = \mathbf{M} \left[egin{array}{c} r_{lin} \ g_{lin} \ b_{lin} \end{array}
ight]$$

• How do we compute M?

### **sRGB** Linear Color Transformation

• Find a transformation M so that

$$\left[egin{array}{c} X \ Y \ Z \end{array}
ight] = \mathbf{M} \left[egin{array}{c} r_{lin} \ g_{lin} \ b_{lin} \end{array}
ight]$$

- Columns of M are proportional to color primaries.
- Rows of M sum to  $[0.3127, 0.3290, 0.3583] \times constant$ .
- Middle row of M sums to  $1 \Rightarrow$  unit luminance.
- Solve the equation

$$\frac{1}{0.3290} \begin{bmatrix} 0.3127 \\ 0.3290 \\ 0.3583 \end{bmatrix} = \begin{bmatrix} 0.9505 \\ 1 \\ 1.0891 \end{bmatrix}$$

$$= \begin{bmatrix} 0.6400 & 0.3000 & 0.1500 \\ 0.3300 & 0.6000 & 0.0600 \\ 0.0300 & 0.1000 & 0.7900 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

• This results in  $[\alpha_1, \alpha_2, \alpha_3] = (0.6444, 1.1919, 1.2032)$ , and

$$\mathbf{M} = \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 0.9505 \end{bmatrix}$$

### **Summary of Approximate sRGB to XYZ Transform**

• First convert to linear sRGB. (approximate)

$$r_{lin} = \left(\frac{\tilde{r}}{255}\right)^{2.2}$$

$$g_{lin} = \left(\frac{\tilde{g}}{255}\right)^{2.2}$$

$$b_{lin} = \left(\frac{\tilde{b}}{255}\right)^{2.2}$$

• Then convert from linear sRGB to XYZ using floating point operations

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{M} \begin{bmatrix} r_{lin} \\ g_{lin} \\ b_{lin} \end{bmatrix}$$

$$= \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 0.9505 \end{bmatrix} \begin{bmatrix} r_{lin} \\ g_{lin} \\ b_{lin} \end{bmatrix}$$

### **Summary of Approximate XYZ to sRGB**

• First convert from XYZ to linear sRGB using floating point operations

$$\begin{bmatrix} r_{lin} \\ g_{lin} \\ b_{lin} \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$= \begin{bmatrix} 3.2410 & -1.5374 & -0.4986 \\ -0.9692 & 1.8760 & 0.0416 \\ 0.0556 & -0.2040 & 1.0570 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

• Then gamma correct using  $\gamma = 2.2$ . (approximate)

$$\tilde{r} = 255 * (r_{lin})^{\frac{1}{2.2}}$$
 $\tilde{g} = 255 * (g_{lin})^{\frac{1}{2.2}}$ 
 $\tilde{b} = 255 * (b_{lin})^{\frac{1}{2.2}}$ 

### **Summary of Exact XYZ to sRGB**

• First convert from XYZ to linear sRGB using floating point operations

$$\begin{bmatrix} r_{lin} \\ g_{lin} \\ b_{lin} \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$= \begin{bmatrix} 3.2410 & -1.5374 & -0.4986 \\ -0.9692 & 1.8760 & 0.0416 \\ 0.0556 & -0.2040 & 1.0570 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

• Then apply nonlinear correction using  $\gamma = 2.2$ .

$$\tilde{r} = 255 * f(r_{lin})$$

$$\tilde{g} = 255 * f(g_{lin})$$

$$\tilde{b} = 255 * f(b_{lin})$$

where

$$f(x) = \begin{cases} 12.92 \, x & \text{if } x \le 0.0031308 \\ 1.055 \, x^{\frac{1}{2.4}} - 0.055 & \text{if } x > 0.0031308 \end{cases}$$

### **Summary of Exact sRGB to XYZ Transform**

• First convert to linear sRGB. (approximate)

$$r_{lin} = f^{-1} \left( \frac{\tilde{r}}{255} \right)$$

$$g_{lin} = f^{-1} \left( \frac{\tilde{g}}{255} \right)$$

$$b_{lin} = f^{-1} \left( \frac{\tilde{b}}{255} \right)$$

where

$$f^{-1}(v) = \begin{cases} v \div 12.92 & \text{if } x \le 0.04045 \\ \left(\frac{v + 0.055}{1.055}\right)^{2.4} & \text{if } x > 0.04045 \end{cases}$$

• Then convert from linear sRGB to XYZ using floating point operations

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{M} \begin{bmatrix} r_{lin} \\ g_{lin} \\ b_{lin} \end{bmatrix}$$

$$= \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 0.9505 \end{bmatrix} \begin{bmatrix} r_{lin} \\ g_{lin} \\ b_{lin} \end{bmatrix}$$

### **Analog NTSC Standard**

- Assume:
  - NTSC color primaries
  - C white point
- ullet Then the "luminance" component Y is given by

$$Y = 0.2990 \, r_{lin} + 0.5864 \, g_{lin} + 0.1146 \, b_{lin}$$

• By convention, NTSC transforms are performed on the gamma corrected  $(\tilde{r}, \tilde{g}, \tilde{b})$ . So,  $\tilde{Y}$  is given by

$$\tilde{Y} = 0.2990\,\tilde{r} + 0.5864\,\tilde{g} + 0.1146\,\tilde{b}$$

### **Analog NTSC Color Spaces**

• Then, define the YPrPb coordinates system as

$$\begin{bmatrix} \tilde{Y} \\ Pb \\ Pr \end{bmatrix} = \begin{bmatrix} \tilde{Y} \\ \tilde{b} - \tilde{Y} \\ \tilde{r} - \tilde{Y} \end{bmatrix}$$

• Then, YUV coordinates are defined as

$$\begin{bmatrix} \tilde{Y} \\ U \\ V \end{bmatrix} = \begin{bmatrix} \tilde{Y} \\ Pb/2.03 \\ Pr/1.14 \end{bmatrix}$$

• Then, YIQ is a 33° rotation of the UV color space

$$\begin{bmatrix} \tilde{Y} \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\sin 33^o & \cos 33^o \\ 0 & \cos 33^o & \sin 33^o \end{bmatrix} \begin{bmatrix} Y \\ U \\ V \end{bmatrix}$$

$$= \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & -0.322 \\ 0.211 & -0.523 & 0.312 \end{bmatrix} \begin{bmatrix} \tilde{r} \\ \tilde{g} \\ \tilde{b} \end{bmatrix}$$

## **Comments on Analog NTSC Color Standard**

- Technically, YPbPr, YUV and YIQ assume NTSC primaries with C white point.
- Same transformations may be used with other white point and color primaries.
- High definition (SD) TV uses the Rec. 709 primaries with D65 white point.
- All transformations are performed on gamma corrected RGB.
- Nominal bandwidth for Y, I, and Q channels are 4.2MHz, 1.5MHz, and 0.6MHz.
- This chromaticity coordinate system is approximately an opponent color system.

### **Digital NTSC Color Standard**

- Assuming that (r, g, b) are
  - SD: NTSC primaries with C white point.
  - HD: 709 primaries with D65 white point.
  - Gamma corrected with  $\gamma = 2.2$ .
  - Scaled to the range 0 to 255
- First compute the "luminance" component.

$$\tilde{Y} = 0.2990\,\tilde{r} + 0.5864\,\tilde{g} + 0.1146\,\tilde{b}$$

• The values of YCrCb are then given by

$$\begin{bmatrix} Y_d \\ c_b \\ c_r \end{bmatrix} = \begin{bmatrix} \frac{219\tilde{Y}}{255} + 16 \\ \frac{112(\tilde{b} - \tilde{Y})}{0.886 * 255} + 128 \\ \frac{112(\tilde{r} - \tilde{Y})}{0.701 * 255} + 128 \end{bmatrix}$$

ullet Complete transformation assuming gamma corrected (r,g,b) in the range of 0 to 255.

$$\begin{bmatrix} Y_d \\ c_b \\ c_r \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \begin{bmatrix} 0.2568 & 0.5036 & 0.0984 \\ -0.1482 & -0.2907 & 0.4389 \\ 0.4392 & -0.3674 & -0.0718 \end{bmatrix} \begin{bmatrix} \tilde{r} \\ \tilde{g} \\ \tilde{b} \end{bmatrix}$$

• Again, transformations may be used with other color primaries and white points.