EE 637 Final May 5, Spring 2009

Name:	Key_	
Instructions:	,	

- This is a 120 minute exam containing five problems.
- Each problem is worth 40 points for a total score of 200 points
- You may only use your brain and a pencil (or pen) to complete this exam.
- You may not use your book, notes, or a calculator, or any other electronic or physical device for communicating or accessing stored information.

Good Luck.

Fact Sheet

• Function definitions

$$\operatorname{rect}(t) \stackrel{\triangle}{=} \left\{ egin{array}{ll} 1 & \operatorname{for}\ |t| < 1/2 \\ 0 & \operatorname{otherwise} \end{array}
ight. \ \ \, \Lambda(t) \stackrel{\triangle}{=} \left\{ egin{array}{ll} 1 - |t| & \operatorname{for}\ |t| < 1 \\ 0 & \operatorname{otherwise} \end{array}
ight. \ \ \, \sin(t) \stackrel{\triangle}{=} \frac{\sin(\pi t)}{\pi t} \end{array}
ight.$$

• CTFT

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$
$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df$$

• CTFT Properties

$$x(-t) \overset{CTFT}{\Leftrightarrow} X(-f)$$

$$x(t-t_0) \overset{CTFT}{\Leftrightarrow} X(f)e^{-j2\pi ft_0}$$

$$x(at) \overset{CTFT}{\Leftrightarrow} \frac{1}{|a|}X(f/a)$$

$$X(t) \overset{CTFT}{\Leftrightarrow} x(-f)$$

$$x(t)e^{j2\pi f_0 t} \overset{CTFT}{\Leftrightarrow} X(f-f_0)$$

$$x(t)y(t) \overset{CTFT}{\Leftrightarrow} X(f) * Y(f)$$

$$x(t) * y(t) \overset{CTFT}{\Leftrightarrow} X(f)Y(f)$$

$$\int_{-\infty}^{\infty} x(t)y^*(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(f)Y^*(f)df$$

• CTFT pairs

$$\operatorname{sinc}(t) \overset{CTFT}{\Leftrightarrow} \operatorname{rect}(f)$$
$$\operatorname{rect}(t) \overset{CTFT}{\Leftrightarrow} \operatorname{sinc}(f)$$

For a > 0

$$\frac{1}{(n-1)!}t^{n-1}e^{-at}u(t) \overset{CTFT}{\Leftrightarrow} \frac{1}{(j2\pi f + a)^n}$$

• CSFT

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$
$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v)e^{j2\pi(ux+vy)}dudv$$

• DTFT

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$
$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

• DTFT pairs

$$a^n u(n) \stackrel{DTFT}{\Leftrightarrow} \frac{1}{1 - ae^{-j\omega}}$$

• Rep and Comb relations

$$\begin{split} \operatorname{rep}_T\left[x(t)\right] &= \sum_{k=-\infty}^\infty x(t-kT) \\ \operatorname{comb}_T\left[x(t)\right] &= x(t) \sum_{k=-\infty}^\infty \delta(t-kT) \\ \operatorname{comb}_T\left[x(t)\right] &\overset{CTFT}{\Leftrightarrow} \quad \frac{1}{T} \operatorname{rep}_{\frac{1}{T}}\left[X(f)\right] \\ \operatorname{rep}_T\left[x(t)\right] &\overset{CTFT}{\Leftrightarrow} \quad \frac{1}{T} \operatorname{comb}_{\frac{1}{T}}\left[X(f)\right] \end{split}$$

• Sampling and Reconstruction

$$y(n) = x(nT)$$

$$Y(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(\frac{\omega - 2\pi k}{2\pi T}\right)$$

$$s(t) = \sum_{k=-\infty}^{\infty} y(k)\delta(t - kT)$$

$$S(e^{j\omega}) = Y\left(e^{j\omega T}\right)$$

Derive each of the following properties.

- a) Show that if g(t) has a CTFT of G(f), then g(t-a) has a CTFT of $e^{-2\pi jaf}G(f)$.
- b) Show that if g(t) has a CTFT of G(f), then g(t/a) has a CTFT of |a|G(af).
- c) Show that if x_n has a DTFT of $X(e^{j\omega})$, then $(-1)^n x_n$ has a DTFT of $X(e^{j(\omega-\pi)})$.
- d) Show that if $g\left(\begin{bmatrix}x\\y\end{bmatrix}\right)$ has a CSFT of $G\left(\begin{bmatrix}u\\v\end{bmatrix}\right)$, then $g\left(A\begin{bmatrix}x\\y\end{bmatrix}\right)$ has a CSFT of $|A|^{-1}G\left((A^{-1})^t\begin{bmatrix}u\\v\end{bmatrix}\right)$. (Hint: Use the notation $r=\begin{bmatrix}x\\y\end{bmatrix}$ and $f=\begin{bmatrix}u\\v\end{bmatrix}$, so that $G(f)=\int_{\Re^2}g(r)e^{-jr^tf}dr$.)
- a) Let $F(\cdot)'$ denote the Fourier transform operator $F(g(t-c))' = \int_{-\infty}^{\infty} g(t-a) e^{-j2\pi ft} dt$ $t'=ta \int_{-\infty}^{\infty} g(t') e^{-j2\pi f(t'+a)} dt'$ $= e^{-j2\pi fa} \int_{-\infty}^{\infty} g(t') e^{-j2\pi ft'} dt'$ $= e^{-j2\pi fa} \int_{-\infty}^{\infty} g(t') e^{-j2\pi ft'} dt'$

1) when aso, $t = \frac{t}{a}$

$$F(g(\frac{t}{a})) = \int_{-\infty}^{\infty} g(t') e^{-j2\pi f a t'} \cdot a dt'$$

$$= a \int_{-\infty}^{\infty} g(t') e^{-j2\pi f a t'} dt'$$

$$= a G(af)$$

2) When a < 0, $t' = \frac{t}{a}$

$$F(g(\frac{t}{a})) = \int_{-\infty}^{\infty} g(t') e^{-j2\pi f a t'} a dt'$$

$$= -a \int_{-\infty}^{\infty} g(t') e^{-j2\pi f a t'} dt'$$

$$= -a G(af)$$

$$DTFT \{ (-1)^{n} \chi_{n} \} = \sum_{n=-\infty}^{\infty} (-1)^{n} \chi_{n} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} e^{j\pi n} \chi_{n} e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \chi_{n} e^{-j(\omega-\pi)n}$$

$$= \chi(e^{j(\omega-\pi)})$$

d)
$$r = \begin{pmatrix} x \\ y \end{pmatrix} f = \begin{pmatrix} y \\ v \end{pmatrix}$$

$$f = \begin{pmatrix} y \\ y \end{pmatrix} f = \begin{pmatrix} y \\ v \end{pmatrix} e^{-jrt} f dr$$

$$Y' = AY$$
 $Y = A^{-1}Y'$
The Jacobian of Y is A-1, and $|A^{-1}| = |A|^{-1}$

So
$$F(g(Ar))' = \int_{\mathbb{R}^2} g(r') e^{-j(A-'r')^t f} [A]^{-1} dr'$$

$$= |A|^{-1} \int_{\mathbb{R}^2} g(r') e^{-j(A-'r')^t f} dr'$$

$$= |A|^{-1} G((A-1)^t f)$$

Consider a color imaging device that takes input values of (r, g, b) and produces output (X, Y, Z) values given by

$$\left[\begin{array}{c} X\\ Y\\ Z \end{array}\right] = A \left[\begin{array}{c} r^{\alpha}\\ g^{\alpha}\\ b^{\alpha} \end{array}\right] \ .$$

where

$$A = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] \ .$$

- a) Calculate the white point of the device in chromaticity coordinates.
- b) What are the primaries associated with the r, g, and b components respectively? Again, use chromaticity coordinates to specify your answer.
- c) What is the gamma of the device?
- d) Calculate the values of (r, g, b) that will produce the color of an equal energy white. (Hint: You can express your solution in terms of A^{-1} .)

a) White point corresponds to
$$r=1$$
, $g=1$, $b=1$.

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} a & b & C \\ d & e-f \\ g & h & i \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a+b+c \\ d+e+f \\ g+h+i \end{pmatrix}$$
Let $C = a+b+c+d+e+f+g+h+i$

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} a+b+c \\ d+e+f \\ C \\ g+h+i \end{pmatrix}$$

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} A+e+f \\ C \\ G+h+i \end{pmatrix}$$

The primary associated with
$$r$$
 is $\begin{bmatrix} g \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \chi \\ \frac{2}{2} \end{bmatrix} = \begin{bmatrix} \frac{q}{a+d+q} \\ \frac{d}{a+d+q} \end{bmatrix}$

The primary associated with g is $\begin{bmatrix} g \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

The primary associated with g is $\begin{bmatrix} g \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

The primary associated with g is $\begin{bmatrix} \chi \\ g \end{bmatrix} = \begin{bmatrix} \chi \\ g \end{bmatrix} = \begin{bmatrix} \frac{b}{b+e+h} \\ \frac{e}{b+e+h} \end{bmatrix}$

$$\begin{bmatrix} \chi \\ \chi \end{bmatrix} = \begin{bmatrix} \frac{c}{c+f+c} \\ \frac{c}{c+f+c} \\$$

Name: Key

- c) The gamma of the device is d.
- d) Equal energy white means $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = A \begin{pmatrix} r^{\alpha} \\ b^{\alpha} \end{pmatrix}$

$$\begin{pmatrix} r \\ g \\ b \end{pmatrix} = \begin{pmatrix} A^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}^{\frac{r}{a}}$$

Let $Y \in \Re^N$ be a vector containing the pixels in an image window. We can model Y as

$$Y = tS + W$$

where $t \in \mathbb{R}^N$ is a deterministic column vector of length N, S is scalar valued Gaussian random variable with mean 0 and variance σ^2 , and W is a independent Gaussian random vector of correlated noise with distribution $N(0, R_w)$ where R_w is an $N \times N$ positive definite covariance matrix.

Intuitively, Y is composed of a signal tS obscured by noise W. Our objective is to estimate the value of S from the observations Y. To do this, we will form a MMSE linear estimator for S given by

$$\hat{S} = Y^t \theta$$

where $\theta \in \Re^N$ is a vector of coefficients.

Furthermore, define the covariance matrix of Y given by

$$R_y = E\left[YY^t\right] ,$$

and the cross-covariance column vector of Y and S given by

$$b = E[YS]$$
.

- a) Calculate an expression for the MSE given by $E\left[||S-\hat{S}||^2\right]$ in terms of $R_y,\,b,\,\sigma^2,\,$ and $\theta.$
- b) Use the expression from part a) to compute the value of θ that produces the MMSE estimate of S.
- c) Calculate R_y in terms of t, σ^2 , and R_w .
- d) Calculate b in terms of t, σ^2 , and R_w .
- e) Use the above results to calculate a closed form expression for \hat{S} .

a)
$$E[||s-\hat{s}||^{2}] = E[(s-y^{\dagger}0)^{2}]$$

$$= E[s^{2}-20^{\dagger}ys + 0^{\dagger}y \cdot y^{\dagger}0]$$

$$= E[s^{2}] - 20^{\dagger}E[ys] + 0^{\dagger}E[yy^{\dagger}]0$$

$$= 6^{2} - 20^{\dagger}b + 0^{\dagger}Ry0$$
b)
$$\frac{\partial}{\partial \theta} E[||s-\hat{s}||^{2}] = 2Ry\theta - 2b = 0 \quad \hat{\theta} = Ry^{\dagger}b$$

Name:
$$\underline{Key}$$

c) $Ry = E[Jy^t]$

$$= E[(ts+w)(ts+w)^t]$$

$$= E[s^2tt^t + Stw^t + Swt^t + Ww^t]$$
Since S and W are independent, $E[Swt^t] = E[S]E[W]t^t = 0$

$$E[Stw^t] = tE[S]E[W^t] = 0$$

$$Ry = 6^2tt^t + Rw$$

d)
$$b = E[YS]$$

$$= E[(ts+w)s]$$

$$= E[ts^2+ws]$$

$$= tE[s^2] + E[w]E[s]$$

$$= 6^2 t$$
e) $\hat{S} = Y^t 0 = Y^t Ry^{-1}b$

$$= Y^t (6^2 t t^t + Rw)^{-1} 6^2 t$$

Note that we can show that Ry is positive definite.

Remember Ry = 6^2 tt + Rw. Since tt is positive semi-definite, and Rw is positive definite, we have that Ry is positive definite.

This is helpful in explaining why $0=Ry^{-1}b$ makes $E[1|S-3||^2]$ minimum. $\left(\frac{\partial^2}{\partial \theta^2}E[1|S-3||^2]=2Ry$, Ry is positive definite.)

Consider a non-linear prediction problem for which we are trying to predict the value of a scalar Y_n from a vector of observations Z_n . Our assumption is that we can estimate Y_n using the non-linear predictor given by

$$\hat{Y}_n = f(Z_n, \theta)$$

where $\theta \in \Re^p$ is a p dimensional parameter vector that controls the behavior of the nonlinear predictor.

Fortunately, we are given some training data pairs with the form (Y_n, Z_n) .¹ The data is partitioned into two sets. The first set, $n \in S_1$, contains $N = |S_1|$ pairs, and is used for training purposes. The second set, $n \in S_2$, contains $M = |S_2|$ pairs, and is used for testing purposes.

Using these data, we can define the training MSE as

$$MSE_1(\theta) = \frac{1}{N} \sum_{n \in S_1} || Y_n - f(Z_n, \theta) ||^2,$$

the testing MSE as

$$MSE_2(\theta) = \frac{1}{M} \sum_{n \in S_2} || Y_n - f(Z_n, \theta) ||^2,$$

and the expected MSE as

$$MSE_3(\theta) = E\left[|| Y_n - f(Z_n, \theta) ||^2 \right].$$

Based on these error measures, we can define the following two estimates for the parameter vector.

$$\hat{\theta} = \arg\min_{\theta} MSE_1(\theta)$$

$$\theta^* = \arg\min_{\theta} MSE_3(\theta)$$

- a) Which of the two quantities would you expect to be smaller, $MSE_2(\hat{\theta})$ or $MSE_2(\theta^*)$? Why?
- b) What is the disadvantage of using $MSE_2(\theta^*)$?
- c) Approximately how large should N be in order for $\hat{\theta}$ to be useful?
- d) Sketch the plots of $MSE_1(\hat{\theta})$, $MSE_2(\hat{\theta})$, and $MSE_2(\theta^*)$ as a function of the amount of training data N.
- e) Which value would you expect to be smaller, $MSE_1(\hat{\theta})$ or $MSE_2(\hat{\theta})$. Why?
- f) If you are reporting results of your experiment, which value should you report, $MSE_1(\hat{\theta})$ or $MSE_2(\hat{\theta})$. Why?

Assume that each training data pair is independent, and each pairs has the same distribution.

Name:
$$\frac{Key}{MSE_2(0^*)}$$
 is expected to be smaller.

$$E[||y_n - f(Z_n, 0^*)||^2] \leq E[||y_n - f(Z_n, \hat{0})||^2]$$

$$E[||MSE_2(0^*)|] = E[\frac{1}{M} \sum_{n \in S_2} ||y_n - f(Z_n, 0^*)||^2]$$

$$= \frac{1}{M} \sum_{n \in S_2} E[||y_n - f(Z_n, 0^*)||^2]$$

$$= E[||y_n - f(Z_n, \hat{0})||^2]$$

$$= \frac{1}{M} \sum_{n \in S_2} E[||y_n - f(Z_n, \hat{0})||^2]$$

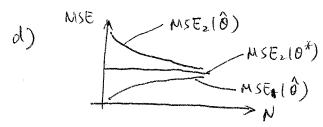
$$= E[||y_n - f(Z_n, \hat{0})||^2]$$

$$= E[||y_n - f(Z_n, \hat{0})||^2]$$

$$= E[||y_n - f(Z_n, \hat{0})||^2]$$

Therefore, E[MSEz(0*)] \(\in \in \in \mathbb{M} \)

- b) In order to obtain 0*, we have to know the distribution of Yn and Zn, which is usually not available.
- c) N should be at least larger than p. But the larger, the better.



- e) MSE, (8) is smaller, because it is testing on the same dataset as the training data. Whereas MSE, (8) is testing on the testing data using the estimate from the training data.
- f) Report MSE_2(0), because in real cases it's meaningless to test on training data. Our goal is to use the estimated 0 along with new data to estimate Yn. The new data won't be the same as the training data.

Consider the 1-D error diffusion algorithm specified by the equations

$$b_n = Q(y_n)$$

$$e_n = y_n - b_n$$

$$y_n = x_n + e_{n-1}$$

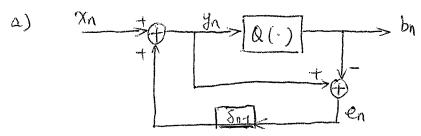
where x_n is the input, b_n is the output, and $Q(\cdot)$ is a binary quantizer with the form

$$Q(y) = \begin{cases} 1 & \text{if } y > 0.5 \\ 0 & \text{if } y \le 0.5 \end{cases}.$$

where we assume that $e_0 = 0$ and the algorithm is run for $n \ge 1$.

Furthermore, define $d_n = x_n - b_n$.

- a) Draw a flow diagram for this algorithm. Make sure to label all the signals in the flow diagram using the notation defined above.
- b) Calculate b_n for n=1 to 10 when $x_n=0.25$ and $e_0=0$.
- c) Calculate an expression for d_n in terms of the quantization error e_n .
- d) Calculate an expression for $\sum_{n=1}^{N} d_n$ in terms of the quantization error e_n .
- e) What does the result of part d) above tell you about the output of error diffusion?



()
$$dn = \chi_n - b_n = \chi_n - (y_n - e_n) = \chi_n - (\chi_n + e_{n-1} - e_n) = e_n - e_{n-1}$$

d)
$$\sum_{n=1}^{N} d_n = \sum_{n=1}^{N} (e_n - e_{n-1}) = {}_{15}e_n - e_0 = e_N.$$

Name: Key

- e) O It tells us that the accumulative error is bounded.

 Now we prove that en is bounded.
 - 1) When N=0, eo=0 is bounded.
 - 2) We assume that e_k is bounded, then $f_{k+1} = \chi_{k+1} + e_k$ is bounded since χ_{k+1} is bounded as well.

 Then $e_{k+1} = f_{k+1} b_{k+1}$ is bounded, since f_{k+1} is bounded and $g_{k+1} = Q(f_{k+1})$ is bounded.

Thus ex is bounded > ext is bounded

- 3) By induction, en is bounded for $N \in \mathbb{Z}^+$
- 2) It tells us that the local average of the signal is approximately maintained.

$$\sum_{n=1}^{N} d_n = \sum_{n=1}^{N} (x_n - b_n) = e_N$$

$$\Rightarrow \quad \sum_{n=1}^{N} p_n = \sum_{n=1}^{N} \chi_n - e_N$$

So the local average of the output is approximately the same as the local average of the input.