EE 637 Final Exam

May 4, Spring 2004

Name:

Instructions:

- Follow all instructions carefully!
- This is a 120 minute exam containing five problems.
- You may only use your brain and a pencil (or pen) to complete this exam. You may not use your book, notes or a calculator.

Good Luck.

Name:

\qquad
Problem 1.(15pt) Consider an image $f(x, y)$ with a CSFT given by $F(u, v)$ and a forward projection

$$
\begin{aligned}
p_{\theta}(r) & =\mathcal{F} \mathcal{P}\{f(x, y)\} \\
& =\int_{-\infty}^{\infty} f(r \cos (\theta)-z \sin (\theta), r \sin (\theta)+z \cos (\theta)) d z
\end{aligned}
$$

and let $P_{\theta}(\rho)$ denote the CTFT of $p_{\theta}(r)$.
Define the functions

$$
\begin{aligned}
\delta(x, y) & =\delta(x) \delta(y) \\
\operatorname{rect}(x) & = \begin{cases}1 & \text { if }|x| \leq 1 / 2 \\
0 & \text { if }|x|>1 / 2\end{cases}
\end{aligned}
$$

a) Calculate the forward projection $p_{\theta}(r)$ when

$$
f(x, y)=\delta(x-1, y)
$$

b) Calculate the forward projection $p_{\theta}(r)$ when

$$
f(x, y)=\operatorname{rect}\left(\sqrt{x^{2}+y^{2}}\right)
$$

c) Calculate the $P_{\theta}(\rho)$ (i.e. the CTFT of $p_{\theta}(r)$) when

$$
f(x, y)=\operatorname{rect}\left(\sqrt{x^{2}+y^{2}}\right)
$$

(Hint: Use the fact that the CSFT of $\operatorname{rect}\left(\sqrt{x^{2}+y^{2}}\right)$ is $\left.\operatorname{jinc}(u, v)\right)$

Name:

Name:

Problem 2.(30pt) Let $X(m, n)$ be an achromatic image taking continous values in the interval $[0,1]$, and let $T(m, n)$ be a 2-D random field of i.i.d. random variables which are uniformly distributed on the interval $[0,1]$. Let the halftoned version of $X(m, n)$ be given by

$$
Y(m, n)= \begin{cases}1 & \text { if } X(m, n) \geq T(m, n) \\ 0 & \text { if } X(m, n)<T(m, n)\end{cases}
$$

a) Is $Y(m, n)$ a stationary random process?
b) Calculate $\mu(m, n)=E[Y(m, n)]$
c) Calculate $E[D(m, n) D(m+k, n+l)]$ for $D(m, n)=Y(m, n)-\mu(m, n)$.
d) Is $D(m, n)$ a stationary random process?
e) For the special case of $X(m, n)=g$, compute the power spectral density $S\left(e^{j \mu}, e^{j \nu}\right)$ of $D(m, n)$.
f) Is $Y(m, n)$ a good quality halftone of $X(m, n)$. Justify your answer.

Name:

Name:
Problem 3.(25pt) Consider the following 2-D LSI systems. The first systems has input $x(m, n)$ and output $y(m, n)$, and the second system has input $y(m, n)$ and output $z(m, n)$.

$$
\begin{align*}
& y(m, n)=x(m, n)+a y(m, n-1) \tag{S1}\\
& z(m, n)=y(m, n)+b z(m-1, n) \tag{S2}
\end{align*}
$$

a) Calculate the 2-D frequency response $H_{1}\left(e^{j \mu}, e^{j \nu}\right)=\frac{Y\left(e^{j \mu}, e^{j \nu}\right)}{X\left(e^{j \mu}, e^{e^{\nu \nu}}\right)}$.
b) Calculate the 2-D frequency response for system $H_{2}\left(e^{j \mu}, e^{j \nu}\right)=\frac{Z\left(e^{j \mu}, e^{j \nu}\right)}{Y\left(e^{j \mu}, e^{j \nu}\right)}$.
c) Calculate the 2-D frequency response for system $H_{3}\left(e^{j \mu}, e^{j \nu}\right)=\frac{Z\left(e^{j \mu}, e^{j \nu}\right)}{X\left(e^{j \mu}, e^{j \nu}\right)}$.
d) Calculate a single 2-D difference equation for the system $H_{3}\left(e^{j \mu}, e^{j \nu}\right)$.
e) For what values of a and b is the 2-D system $H_{3}\left(e^{j \mu}, e^{j \nu}\right)$ stable?

Name:

Name:

\qquad
Problem 4.(15pt) In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength λ. (Assume that the color matching allows for color to be subtracted from the reference in the standard manner described in class.)
A each wavelength λ, the matching color is given by

$$
[R, G, B]\left[\begin{array}{l}
r(\lambda) \\
g(\lambda) \\
b(\lambda)
\end{array}\right]
$$

where

$$
\begin{aligned}
& 1=\int_{0}^{\infty} r(\lambda) d \lambda \\
& 1=\int_{0}^{\infty} g(\lambda) d \lambda \\
& 1=\int_{0}^{\infty} b(\lambda) d \lambda
\end{aligned}
$$

Further define the white point

$$
W=[R, G, B]\left[\begin{array}{l}
r_{w} \\
g_{w} \\
b_{w}
\end{array}\right]
$$

Let $I(\lambda)$ be the light reflected from a surface.
a) Calculate $\left(r_{e}, g_{e}, b_{e}\right)$ the tristimulus values for the spectral distribution $I(\lambda)$ using primaries R, G, B and an equal energy white point.
b) Calculate $\left(r_{c}, g_{c}, b_{c}\right)$ the tristimulus values for the spectral distribution $I(\lambda)$ using primaries R, G, B and white point $\left(r_{w}, g_{w}, b_{w}\right)$.
c) Calculate $\left(r_{\gamma}, g_{\gamma}, b_{\gamma}\right)$ the gamma corrected tristimulus values for the spectral distribution $I(\lambda)$ using primaries R, G, B, white point $\left(r_{w}, g_{w}, b_{w}\right)$, and $\gamma=2.2$.

Name:

Name:

\qquad
Problem 5.(15) Consider the discrete-time signal x_{n}, and let \hat{x}_{n} be the linear causal prediction of x_{n} given by

$$
\hat{x}_{n}=\sum_{k=1}^{p} a_{k} x_{n-k}
$$

Let the total squared prediction error (TSPE) be given by

$$
T S P E=\sum_{n=0}^{N-1}\left(x_{n}-\hat{x}_{n}\right)^{2}
$$

a) Determine a formula for the TSPE in terms of the prediction coefficients a_{k}.
b) Compute an expression for the coefficients a_{k} that minimize the TSPE.
c) Let $y_{n}=x_{n}-\hat{x}_{n}$, let p be large, and let x_{n} be an i.i.d. random process. Describe the power spectrum of y_{n}. Justify you answer.

Name:

