EE 637 Final Exam May 4, Spring 2004

Name:

Instructions:

- Follow all instructions carefully!
- This is a 120 minute exam containing **five** problems.
- You may **only** use your brain and a pencil (or pen) to complete this exam. You **may not** use your book, notes or a calculator.

Good Luck.

Problem 1.(15pt) Consider an image f(x, y) with a CSFT given by F(u, v) and a forward projection

$$p_{\theta}(r) = \mathcal{FP} \{ f(x, y) \}$$

=
$$\int_{-\infty}^{\infty} f(r \cos(\theta) - z \sin(\theta), r \sin(\theta) + z \cos(\theta)) dz$$

and let $P_{\theta}(\rho)$ denote the CTFT of $p_{\theta}(r)$. Define the functions

$$\delta(x, y) = \delta(x)\delta(y)$$

rect(x) =
$$\begin{cases} 1 & \text{if } |x| \le 1/2 \\ 0 & \text{if } |x| > 1/2 \end{cases}$$

a) Calculate the forward projection $p_{\theta}(r)$ when

$$f(x,y) = \delta(x-1,y)$$

b) Calculate the forward projection $p_{\theta}(r)$ when

$$f(x,y) = \operatorname{rect}\left(\sqrt{x^2 + y^2}\right)$$

c) Calculate the $P_{\theta}(\rho)$ (i.e. the CTFT of $p_{\theta}(r)$) when

$$f(x,y) = \operatorname{rect}\left(\sqrt{x^2 + y^2}\right)$$

(Hint: Use the fact that the CSFT of rect($\sqrt{x^2 + y^2}$) is jinc(u, v))

Name:

Problem 2.(30pt) Let X(m, n) be an achromatic image taking continuous values in the interval [0, 1], and let T(m, n) be a 2-D random field of i.i.d. random variables which are uniformly distributed on the interval [0, 1]. Let the halftoned version of X(m, n) be given by

$$Y(m,n) = \begin{cases} 1 & \text{if } X(m,n) \ge T(m,n) \\ 0 & \text{if } X(m,n) < T(m,n) \end{cases}$$

- a) Is Y(m, n) a stationary random process?
- b) Calculate $\mu(m, n) = E[Y(m, n)]$
- c) Calculate E[D(m,n)D(m+k,n+l)] for $D(m,n) = Y(m,n) \mu(m,n)$.
- d) Is D(m, n) a stationary random process?

e) For the special case of X(m,n) = g, compute the power spectral density $S(e^{j\mu}, e^{j\nu})$ of D(m, n).

f) Is Y(m, n) a good quality halftone of X(m, n). Justify your answer.

Name:

Problem 3.(25pt) Consider the following 2-D LSI systems. The first systems has input x(m,n) and output y(m,n), and the second system has input y(m,n) and output z(m,n).

$$y(m,n) = x(m,n) + ay(m,n-1)$$
 S1

$$z(m,n) = y(m,n) + bz(m-1,n)$$
S2

- a) Calculate the 2-D frequency response $H_1(e^{j\mu}, e^{j\nu}) = \frac{Y(e^{j\mu}, e^{j\nu})}{X(e^{j\mu}, e^{j\nu})}$. b) Calculate the 2-D frequency response for system $H_2(e^{j\mu}, e^{j\nu}) = \frac{Z(e^{j\mu}, e^{j\nu})}{Y(e^{j\mu}, e^{j\nu})}$. c) Calculate the 2-D frequency response for system $H_3(e^{j\mu}, e^{j\nu}) = \frac{Z(e^{j\mu}, e^{j\nu})}{X(e^{j\mu}, e^{j\nu})}$.
- d) Calculate a single 2-D difference equation for the system $H_3(e^{j\mu}, e^{j\nu})$.
- e) For what values of a and b is the 2-D system $H_3(e^{j\mu}, e^{j\nu})$ stable?

Name:

Problem 4.(15pt) In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength λ . (Assume that the color matching allows for color to be subtracted from the reference in the standard manner described in class.)

A each wavelength λ , the matching color is given by

$$[R, G, B] \left[\begin{array}{c} r(\lambda) \\ g(\lambda) \\ b(\lambda) \end{array} \right]$$

where

$$1 = \int_0^\infty r(\lambda) d\lambda$$
$$1 = \int_0^\infty g(\lambda) d\lambda$$
$$1 = \int_0^\infty b(\lambda) d\lambda$$

Further define the white point

$$W = [R, G, B] \begin{bmatrix} r_w \\ g_w \\ b_w \end{bmatrix}$$

Let $I(\lambda)$ be the light reflected from a surface.

a) Calculate (r_e, g_e, b_e) the tristimulus values for the spectral distribution $I(\lambda)$ using primaries R, G, B and an equal energy white point.

b) Calculate (r_c, g_c, b_c) the tristimulus values for the spectral distribution $I(\lambda)$ using primaries R, G, B and white point (r_w, g_w, b_w) .

c) Calculate $(r_{\gamma}, g_{\gamma}, b_{\gamma})$ the gamma corrected tristimulus values for the spectral distribution $I(\lambda)$ using primaries R, G, B, white point (r_w, g_w, b_w) , and $\gamma = 2.2$.

Problem 5.(15) Consider the discrete-time signal x_n , and let \hat{x}_n be the linear causal prediction of x_n given by

$$\hat{x}_n = \sum_{k=1}^p a_k \, x_{n-k}$$

Let the total squared prediction error (TSPE) be given by

$$TSPE = \sum_{n=0}^{N-1} (x_n - \hat{x}_n)^2$$

a) Determine a formula for the TSPE in terms of the prediction coefficients a_k .

b) Compute an expression for the coefficients a_k that minimize the TSPE.

c) Let $y_n = x_n - \hat{x}_n$, let p be large, and let x_n be an i.i.d. random process. Describe the power spectrum of y_n . Justify you answer.