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Image Restortation

• Problem:

– You want to know some image X .

– But you only have a corrupted version Y .

– How do you determine X from Y ?

• Corruption may result from:

– Additive noise

– Nonadditive noise

– Linear distortion

– Nonlinear distortion
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Optimum Linear FIR Filter

• Find an “optimum” linear filter to compute X from
Y .

• Filter uses input window of Y to estimate each output
pixel Xs.

• Filter can be designed to be minimize mean squared
error (MMSE).

• The estimate of Xs is denoted by X̂s.

• W (s) denotes the window about s.

• The estimate, X̂s, is a function of YW (s).
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Application of Optimum Filter

X̂s = f (YW (s))

Measured Image Y

window
about s

s s

Restored Image X(Y)^

• The function f (YW (s)) is designed to produce a MMSE
estimate of X .

• If f (YW (s)) is:

– Linear ⇒ linear space invariant filter.

– Nonlinear ⇒ nonlinear space invariant filter.

• This filter can reduce the effects of all types of cor-
ruption.
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Optimality Properities of Linear Filter

• If both images are jointly Gaussian:

– Then MMSE filter is linear.

X̂s = E[Xs|YW (s)]

= AYW (s) + b

• If images are not jointly Gaussian:

– Then MMSE filter is generally not linear.

X̂s = E[Xs|YW (s)]

= f (YW (s))

– However, the MMSE linear filter can still be very
effective!
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Formulation of MMSE Linear Filter:
Definitions

• W (s) - window about the pixel s.

• p - number of pixels in W (s)

• zs - row vector containing pixels of YW (s).

• θ - parameter vector

• Detailed definitions:

– Definition of W (s)

W (s) = [s, s + r1, . . . , s + rp−1]

where r1, . . . , rp−1 index neighbors.

– Definition of zs

zs = [ys, ys+r1, . . . , ys+rp−1]

– Definition of θ

θ = [θ0, . . . , θp−1]
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Formulation of MMSE Linear Filter:
Objectives

• Linear filter is given by

x̂s = zsθ

• Mean squared error is given by

MSE = E[|xs − x̂s|2]
= E[|xs − zsθ|2]

• The MMSE filter parameters θ∗ are given by

θ∗ = arg min
θ

E[|xs − zsθ|2] .

• How do we solve this problem?



EE637 Digital Image Processing I: Purdue University VISE - May 1, 2002 7

More Matrix Notation

• Define the subset S0 of image pixels.

1. S0 ⊂ S

2. S0 contains N0 < N pixels

3. S0 usually does not contain pixels on the boundary
of the image.

4. S0 = [s1, . . . , sN0]

• Define the N0 × p matrix Z

Z =




zs1

zs2
...

zsN0




.

• Define the N0 × 1 column vectors X and X̂

X =




xs1

xs2
...

xsN0




and X̂ =




x̂s1

x̂s2
...

x̂sN0




.

• Then
X ≈ X̂ = Zθ
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Least Squares Linear Filter

• We expect that

MSE = E[|xs − zsθ|2]
≈ 1

N0

∑
s∈S0

|xs − zsθ|2

=
1

N0
||X − Zθ||2

• So we may solve the equation

θ∗ = arg min
θ

||X − Zθ||2

• The solution θ∗ is the least squares estimate, of θ, and
the estimate

X̂ = Zθ∗

is known as the least squares filter.
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Computing Least Squares Linear
Filter

θ∗ = arg min
θ

1

N0
||X − Zθ||2

• So

θ∗ = arg min
θ


 1

N0
||X − Zθ||2




= arg min
θ


 1

N0
(X − Zθ)t(X − Zθ)




= arg min
θ


 1

N0
(XtX − 2θtZtX + θtZtZθ)




= arg min
θ



XtX

N0
− 2θtZ

tX

N0
+ θtZ

tZ

N0
θ




= arg min
θ


θtZ

tZ

N0
θ − 2θtZ

tX

N0



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Covariance Estimates

• Define the p × p matrix

R̂zz
4
==

ZtZ

N0

=
1

N0


zt

s1
, zt

s2
, . . . , zt

sN0







zs1

zs2
...

zsN0




=
1

N0

N0∑
i=1

zt
si
zsi

• Define the p × 1 vector

r̂zx
4
=

ZtX

N0

=
1

N0


zt

s1
, zt

s2
, . . . , zt

sN0







xs1

xs2
...

xsN0




=
1

N0

N0∑
i=1

zt
si
xsi

• So
θ∗ = arg min

θ

(
θtR̂zzθ − 2θtr̂zx

)
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Interpretation of R̂zz and r̂zx

• R̂zz is an estimate of the covariance of zs.

Rzz
4
= E[zt

szs]

= E

 1

N0

N∑
s=1

zt
szs




= E
[
R̂zz

]

• r̂zx is an estimate of the cross correlation between zs

and xs.

rzx
4
= E[zt

sxs]

= E

 1

N0

N∑
s=1

zt
sxs




= E [r̂zx]
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Solution to Least Squares Linear
Filter

• We need

θ∗ = arg min
θ

1

N0
||X − Zθ||2

We have shown this is equivalent to

θ∗ = arg min
θ

(
θtR̂zzθ − 2θtr̂zx

)

• Taking the gradient of the cost functional

0 = 5θ

(
θtR̂zzθ − 2θtr̂zx

)∣∣∣∣∣θ=θ∗

=
(
2R̂zzθ − 2r̂zx

)∣∣∣∣∣θ=θ∗

Solving for θ∗ yeilds

θ∗ =
(
R̂zz

)−1
r̂zx
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Summary of Solution to Least
Squares Linear Filter

• First compute

R̂zz =
1

N0

N∑
s=1

zt
szs

r̂zx =
1

N0

N∑
s=1

zt
sxs

• Then compute

θ∗ =
(
R̂zz

)−1
r̂zx

• The vector θ∗ then contains the values of the filter
coefficients.
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Training

• θ∗ is usually estimated from “training” data.

• Training data

– Generally consists of image pairs (X,Y ) where Y
is the measured data and X is the undistorted im-
age.

– Should be typical of what you might expect.

– Can often be difficult to obtain.

• Testing data

– Also consists of image pairs (X,Y ).

– Is used to evaluate the effectiveness of the filters.

– Should never be taken from the training data set.

• Training versus Testing

– Performance on training data is always better than
performance on testing data.

– As the amount of training data increases, the per-
formance on training and testing data both ap-
proach the best achievable performance.
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Comments

• Wiener filter is the MMSE linear filter.

• Wiener filter may be optimal, but it isn’t always good.

– Linear filters blur edges

– Linear filters work poorly with non-Gaussian noise.

• Nonlinear filters can be designed using the same method-
ologies.
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Is MMSE a Good Quality Criteria for
Images?

• In general, NO! ... But sometimes it is OK.

• For achromatic images, it is best to choose X and Y
in L∗ or gamma corrected coordinates.

• Let H be a filter that implements the CSF for the
human visual system.

– Then a better metric of error is

HV SE = ||H(X − X̂)||2
=

(
X − X̂

)t
HtH

(
X − X̂

)

= ||X − X̂||2B

where B = HtH .

– ||X − X̂||2B is a quadratic norm.

• What is the minimum HVSE estimate X̂?
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Answer

• The answer is X̂ = E[X|Y ].

– This is the same as for mean squared error!

– The conditional expectation minimizes any quadratic
norm of the error.

– This is also true for non-Gaussian images.

• Let X̂ = AYW (s) + b be the MMSE linear filter.

– This filter is also the minimum HVSE linear filter.

– This is also true for non-Gaussian images.



EE637 Digital Image Processing I: Purdue University VISE - May 1, 2002 18

Proof

• Define V
4
= HX

min
X̂

E
[
||X − X̂||2B

]

= min
X̂

E
[
||H(X − X̂)||2

]

= min
V̂

E
[
||V − V̂ ||2

]

= E
[||V − E[V |Y ]||2]

= E
[||HX − E[HX|Y ]||2]

= E
[||H(X − E[X|Y ])||2]

= E
[||X − E[X|Y ]||2B

]

• So, X̂ = E[X|Y ] minimizes the error measure.

HV SE = ||X − X̂||2B .


