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Nonlinear Filtering

e Linear filters

— Tend to blur edges and other image detail.
— Perform poorly with non-Gaussian noise.

— Result from Gaussian image and noise assump-
tions.

— Images are not Gaussian.
e Nonlinear filter

— Can preserve edges
— Very effective at removing impulsive noise

— Result from non-Gaussian image and noise assump-
tions.

— Can be difficult to design.
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Linear Filters

e Definition: A system y = T'|x] is said to be linear if
for all a, 6 € IR

oy + Bye = Tlaxy + B
where y; = T'|x1] and yo = T'|x9).
e Any filter of the form

Ys = ZT: hs,rxr
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Homogeneous Filters

e Definition: A filter y = T'|z| is said to be homoge-
neous if for all @ € IR

ay = T|ax]

e This is much weaker than linearity.

e Homogeneity is a natural condition for scale invariant
systems.
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Median Filter

e Let W be a window with an odd number of points.

e Then the median filter is given by
ys = median {xsy, : 7 € W}

e [s the median filter:

— Linear?

— Homogeneous?

e Consider the 1-D median filter with a 3-point window.

x(m) | 0 0 1 1,000 1 1 2 2

y(m) |7 0 1 1 1 1 2 ?
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Median Filter: Optimization
Viewpoint

e Consider the median filter
ys = median {xs., : r € W}
and consider the following functional.

F(6) S 5 10— su]

e Then y, solves the following optimization equation.

Ys = arg mein F(0)

e Differentiating, we have

d d

— F(h) = —

“9 o 375—1—7“‘

= X Sigl’l<6 - x3+r>
reW

1>

f(0)
This expression only holds for 6 # x,,, forallr € W.

e So the solution falls at 6 = x,, such that

0= 2 SigIl(H - xs—H“)
reWw

r#(s%—Ss)
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Example: Median Filter Function

e Consider a 1-D median filter
— Three point window of W = {—1,0,1}
— Inputs [x(n — 1), z(n),x(n +1)] = [—2, —4, 5].
1

F(0) = 0—x,
(0) kzz_l‘ Ttk

Median Function F(8)

w
o

N
o1

Value of Functional
- N
(@] ] o

=
o

—510 -5 0 5 10
Output value 6
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Example: Derivative of Median Filter
Function

e Consider a 1-D median filter
— Three point window of W ={—1,0,1}
— Inputs [x(n — 1), z(n),x(n +1)] = [—2, =4, 5].
1

f(0) = kzz—l sign(0 — x,. 1)

Derivative of Median Function f(0)

Value of Functional
o

4 l l l
-10 -5 0 5 10
Output value 6
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Problem with an Even Number of
Points

e Consider a 1-D median filter
— Four point window of W = {—1,0,1,2}
— Inputs [x(n—1), z(n), x(n+1), x(n+2)| = [-2, —4, 5, 6].

e Solution is not unique.

2
F(0) = 0—x,
6)= 3 10— 2o

Median Function F(8)

H H
o &2

w
o1

Value of Functional
N w
(@] ] o

N
o

1 L L L
—?LO -5 0 5 10
Output value 6
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Weighted Median Filter

e Defined the functional

A
F(0) = TEZW a0 — Tsiy|

where a, are weights assigned to each point in the

window W.

e Weighted median is computed by

Ys = argmin Y. a0 — x5y,
0 rew

e Differentiating, we have

d d
@F(Q) = — > CLT|9—3:S+T‘

= > a,sign(f — xgy,)
reW

f(0)
This expression only holds for § # x, for all r € W.

1>

e Need to find s such that f(6) is “nearly” zero.
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Example: Weighted Median Filter
Function

e Consider a 1-D median filter
— Five point window of W = {—-2,—1,0,1,2}
— Inputs [z(n—2),- - -, x(n+2)] = [6, —2, —4,5, —1].
o Welghts [CL(—2>, CL(_l)a CL(O), CL<].>, CL(Q)] — [17 2,4,2, 1]
1
FO)= £ a(k)lo— 2.l

Weighted Median Function F(8)

110

1001

901

807

701

601

Value of Functional

507

40}

Output value 6



EE637 Digital Image Processing I: Purdue University VISE - May 1, 2002 11

Example: Derivative of Median Filter
Function

e Consider a 1-D median filter
— Five point window of W ={-2,—1,0,1,2}
— Inputs [x(n—2), - - -, z(n+2)] = |6, —2, —4, 5, —1].
o Welghts [CL<—2>, a<_1)7 CL(O)? CL<1>, CL<2>] — [17 27 47 27 1]
1
f(0) = k:z—1 a(k)sign(0 — x,. 1)

Derivative of Weighted Median Function f(0)

10r

Value of Functional
o

-10 ‘ | |
-10 -5 0 5 10
Output value 6




EE637 Digital Image Processing I: Purdue University VISE - May 1, 2002 12

Computation of Weighted Median

1. Sort points in window.

o Let wg) < ) < -+ < x(y) be the sorted values.

e These values are known as order statistics.

o Let ap) < agp) < --- < ag be the correspond-
ing weights.

2. Find 2% such that

2k P
i) > ;
igl (i) z‘:z‘z*—l (i)

and .
1x—1 %
2 @ (4) < .Z Q(4)

7 1=1%

3. Then the value a;) is the weighted median value.
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Comments on Weighted Median Filter

e Weights may be adjusted to yeild the “best” filter.
e Largest and smallest values are ignored.

e Same as median filter for a, = 1.



