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Digital Halftoning

• Many image rendering technologies only have binary
output. For example, printers can either “fire a dot”
or not.

• Halftoning is a method for creating the illusion of con-
tinuous tone output with a binary device.

• Effective digital halftoning can substantially improve
the quality of rendered images at minimal cost.
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Thresholding

• Assume that the image falls in the range of 0 to 255.

• Apply a space varying threshold, T (i, j).

b(i, j) =




255 if X(i, j) > T (i, j)
0 otherwise

.

• What is X(i, j)?

• Lightness

– Larger ⇒ lighter

– Used for display

• Absorbtance

– Larger ⇒ darker

– Used for printing

• X(i, j) will generally be in units of absorbtance.
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Constant Threshold

• Assume that the image falls in the range of 0 to 255.

• 255 ⇒ Black and 0 ⇒ White

• The minimum squared error quantizer is a simple thresh-
old

b(i, j) =




255 if X(i, j) > T
0 otherwise

.

where T = 127.

• This produces a poor quality rendering of a continuous
tone image.
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The Minimum Squared Error Solution

• Threshold each pixel

– Pixel> 127 Fire ink

– Pixel≤ 127 do nothing
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Ordered Dither

• For a constant gray level patch, turn the pixel “on”in
a specified order.

• This creates the perception of continuous variations
of gray.

• An N × N index matrix specifies what order to use.

I2(i, j) =


 1 2
3 0




• Pixels are turned on in the following order.

0 1 2 3 4
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Implementation of Ordered Dither via
Thresholding

• The index matrix can be converted to a “threshold
matrix” or “screen” using the following operation.

T (i, j) = 255
I(i, j) + 0.5

N 2

• The N×N matrix can then be “tiled” over the image
using periodic replication.

T (i modN, j modN)

• The ordered dither algorithm is then applied via thresh-
olding.

b(i, j) =




255 if X(i, j) > T (i modN, j modN)
0 otherwise

.
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Clustered Dot Screens

• Definition: If the consective thresholds are located in
spatial proximity, then this is called a “clustered dot
screen.

• Example for 8 × 8 matrix:

63 58 49 37 38 50 59 64
57 48 36 22 23 39 51 60
47 35 21 11 12 24 40 52
34 20 10 4 1 5 13 25
33 19 9 3 2 6 14 26
46 32 18 8 7 15 27 41
56 45 31 17 16 28 42 53
62 55 44 30 29 43 54 61
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Example: 8 × 8 Clustered Dot
Screening

8x8 Cluster Dot
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• Only supports 65 gray levels.
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Example: 16 × 16 Clustered Dot
Screening

16x16 Cluster Dot
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• Support a full 257 gray levels, but has half the reso-
lution.
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Properties of Clustered Dot Screens

• Requires a trade-off between number of gray levels
and resolution.

• Relatively visible texture

• Relatively poor detail rendition

• Uniform texture across entire gray scale.

• Robust performance with non-ideal output devices

– Non-additive spot overlap

– Spot-to-spot variability

– Noise
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Dispersed Dot Screens

• Bayer’s optimum index Matrix (1973) can be defined
recursively.

I2(i, j) =


 1 2
3 0




I2n(i, j) =


 4 ∗ In(i, j) + 1 4 ∗ In(i, j) + 2
4 ∗ In(i, j) + 3 4 ∗ In(i, j)




• Yields finer amplitude quantization over larger area.

• Retains good detail rendition within smaller area.
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Example: 8 × 8 Bayer Dot Screening

8x8 Bayer Dot
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• Again, only 65 gray levels.
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Example: 16 × 16 Bayer Dot Screening

16x16 Bayer Dot
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• Doesn’t look much different than the 8 × 8 case.

• No trade-off between resolution and number of gray
levels.
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Example: 128 × 128 Void and Cluster
Screen (1989)

Void and Cluster Dot
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• Substantially improved quality over Bayer screen.
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Properties of Dispersed Dot Screens

• Elliminate the trade-off between number of gray levels
and resolution.

• Within any region containing K dots, the K thresh-
olds should be distributed as uniformly as possible.

• Textures used to represent individual gray levels have
low visibility.

• Improved detail rendition.

• Transitions between textures corresponding to differ-
ent gray levels may be more visible.

• Not robust to non-ideal output devices

– Requires stable formation of isolated single dots.
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Error Diffusion

• Error Diffusion

– Quantizes each pixel using a neighborhood opera-
tion, rather than a simple pointwise operation.

– Moves through image in raster order, quantizing
the result, and “pushing” the error forward.

– Can produce better quality images than is possible
with screens.
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Filter View of Error Diffusion
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b(i,j)f(i,j)
~

• Equations are

b(i, j) =




255 if f̃ (i, j) > T
0 otherwise

e(i, j) = f̃ (i, j) − b(i, j)

f̃ (i, j) = f (i, j) +
∑

k,l∈S
h(k, l)e(i − k, j − l)

• Parameters

– Threshold is typically T = 127.

– h(k.l) are typically choosen to be positive and sum
to 1
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Pixel View of Error Diffusion

1. Initialize f̃ (i, j) ← f (i, j)

2. For each pixel in the image (in raster order)

(a) Compute

b(i, j) =




255 if f̃ (i, j) > T
0 otherwise

(b) Diffuse error forward using the following scheme

~
f(i+1,j−1)

+= h(1,−1)*e(i,j)

~
f(i+1,j)

+= h(1,0)*e(i,j)

~
f(i+1,j+1)

+= h(1,1)*e(i,j)

e(i,j)=f(i,j)−b(i,j) += h(0,1)*e(i,j)

~
f(i,j+1)~

3. Display binary image b(i, j)
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Floyd Steinberg Error Diffusion
(1976)

• Process pixels in neighborhoods by “diffusing error”
and quantizing.

Original Image
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Error Image in Floyd Steinberg Error
Diffusion

• Process pixels in neighborhoods by “diffusing error”
and quantizing.

Original Image
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