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Continuous Space Fourier Transform (CSFT)

Forward CSF'T"

Flu,v) = [0 [0 fla, y)e 2 wetvy) gy
Inverse CSFT:

flz,y) =[50 [°0 Fu,v)e w9 dydy

e Space coordinates:

1. Usually, x is horizontal and y is vertical coordinate
2. Usually, y points down
3. Raster order - Television scans rapidly from left to
right and more slowly from top to bottom.
e Frequency coordinates:
1. u corresponds to horizontal frequency components
(vertical strips).

2. v corresponds to vertical frequency components
(horizontal strips).
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Useful Continuous Space Signal Definitions

1>

0(z,y) = o(x)o(y)

rect(x, y) ~ rect(z) rect(y)

sinc(x,y) = sinc(x)sinc(y)

cire(z,y) 2 rect(ya? + 2)

e A 2-D function f(x,y) is said to be separable if it
is formed by the product of two 1-D functions.

f(z,y) = g(x) h(y)

rect(x, y), sinc(x,y), and §(z,y) are separable func-
tions.

e [s circ(x, y) a separable function?
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CSFT Properties Inherited from CTFT

e Some properties of the CSE'T are very similar to cor-
responding CTFET properties.

Property Space Domain Function CSE'T

Linearity af(x,y)+bg(z,y) aF(u,v) + bG(u,v)
Conjugation  f*(x,y) F*(—u, —v)

Scaling flaz,by) ﬁF(u/a, v/b)
Shifting flx —x0,y — o) e~ I uzotoyn) [y, v)
Modulation — e/2m(tor+eoy) £ (. 4) F(u — ugp,v — 1)
Convolution  f(x,y) * g(x,y) F(u,v) G(u,v)
Multiplication f(x,y) g(x,y) F(u,v) * G(u,v)

e Inner product property

oo o F@,y)g" (2, y)d dy
= [ 7 F(u,v)G*(u,v)du dv
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Properties Specific to CSFT

e But some properties of the CSF'T are quite unique to
the 2-dimensional problem.

Property Space Domain Function CSEFT

Separability f(x)g(y) F(u)G(v)
Rotation — f (A ';j ) A7 F ([u, v] AT
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Separability of CSFT

Flu,v) = [0 [50 fa,y)e 2T dady

— /_OOOO [/_OOOO f([l?,:g)fi_ﬂﬂuxdid 6—j27rvydy

Define the CTFT of f(x,y) in the variable x

Flu,y) = 2 f, y)e T dy
Then the CSFT may be computed as the CTFT of F(u, y)
in y

F(u,v) = [% F(u,y)e 7 ™dy

e Comment: 2-D CSFT can be computed as two 1-D
CTFT’s.
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CSF'T of Separable Functions

Let
g(t) =" G(f)
h(t) & H(f)
Then
g(z)h(y) “&" G(u)H (v)
Proof:

F(u,v) = CSFT {g(x)h(y)}
= %% glx) h(y) e P dady
= 7 S 9(@) h(y) e 72T e dady
= /% g(x)e ™ da) [[7 h(y)e 7>V dy|
= G(u)H(v)
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Useful CSFT Transform Pairs

e 2-D delta function:

CSFT{(x,y)} =

e 2-D rect function:

CSFET {rect(z,y)}

CSFT {6(x)d(y)}
CTFT {6(x)} - CTFT {6(y)}

1-1=1

xxxxxxxxxx

sinc(u, v)

CSFT {rect(x)rect(y)}
CTFT {rect(z)} - CTFT {rect(y)}
sinc(u) sinc(v)
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Rotated Functions

e Let the matrix A be an orthonormal rotation of angle

0
cos(f) sin(6)

—sin(f) cos(f)

e Because A is an orthonormal transform

A_:

Al =1
A—l — At
e Then the CSE'T of the function g (A i ) is given by
C’SFT{g (A Z;j )} = |A]7'G (Ju, 0] A7)
= |A]7'G ([u, 0] A)
— G (A N )
v
e S0 we have
x U

(V)

s[a

)CgTG(A

|

Y
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Rotated Rect Function

e Rotated 2-D rect function:

x
Y

y+xr y—x

V2R

rect( ) = rect (A

|

where

e A is a 45° rotation, so it is and orthonormal transform

x
Y

CSFT {rect (yj/_;,y\;;)} = CSFT {rect (A

)

= sinc | A Y )
K
, V+Uu v—u)
= sinc :
V2 /2
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Rotated 2-D Rect and Sinc Transform Pairs

e Mesh plot

rect((y+x)/sqrt(2).(y-x)/sqrt(2)) sine(fx.fy)

e Contour plot

rect((y+x)/sart(2),(y-x)/sart(2)) sinc(fx,fy)
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More Useful CSFT Transform Pairs

e Circ function:
CSFT {circ(x,y)} = jinc(u,v)
where
Ji <7T \/m>
2v/u? +v?

and Jy(r) is the Bessel function of the first kind order

jinc(u,v) =

circ(x,y) jinc(fx,fy)

Y Axis

X Axis

e Notice that both functions are circularly symmetric
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CSFT of a Plane Wave

e Consider an impulse in the 2-D frequency domain.
F(u,v) =6(u — uy, v — v,)
e [ts inverse transform is a 2-D plane wave.

fla,y) = [0 [5 61—ty v — v,)ed ™) dydy

€j27r(uox+voy)

e We know that

1 . .
cos(27 (upx + VoY) = 5 [ej%(uoxﬂoy) 4 e~ I2m(uor+voy)

e So we have that
cos(2m (U + v,1))
1
CakT 5 10U — Up, v — Up) + 0 (1 + Uy, V + V)]
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2-D Plane Wave Example

e Example transform pair computed with Matlab !

Cosine: U =2 and V,=-4 Frequency Response

y axis
V axis

-10 -5 0 5
u axis

e Graphical representation of space-frequency domain

’
(0] Vo 1Po
INVo——
| o
NN Uo
Po
Plane Wave in Space Domain Impulse in Frequency Domain

~1/Py= V¢ + Us

— Rotations in space and fre-
quency domains are the same.

Lf(x,y) = cos (upxr +voy) + 0.5
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y axis

y axis

More Examples 2-D Plane Waves

Cosine: U0=3 and VO=1

Vv axis

V axis

Frequency Response
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More Examples 2-D Plane Waves

Cosine: UO=0.5 and VO=1

Frequency Response
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X axis

Cosine: U0=2 and VO=4

Frequency Response

y axis
V axis




