

EE 637 Midterm Exam #1
February 20, Spring 2002

Name: _____

Instructions:

- Follow all instructions carefully!
- This is a 50 minute exam containing **three** problems.
- You may **only** use your brain and a pencil (or pen) to complete this exam. You **may not** use your book, notes or a calculator.
- This is also homework #1. Please keep it. Complete it as a homework, and hand it in by Friday at 5:00PM.

Good Luck.

Name: _____

Problem 1.(25pt)

Consider the DT random process $X(n)$ formed by i. i. d. random variables with

$$P\{X(n) = 1\} = P\{X(n) = -1\} = 0.5$$

Also consider the DT random process

$$Y(n) = \sum_{k=-\infty}^{\infty} X(k)p(n-k)$$

where $p(n)$ is a real valued DT function with a DTFT of $P(e^{j\omega})$.

- Is $Y(n)$ a stationary random process? Justify your answer.
- Compute $R_x(k)$ autocorrelation and $S_x(e^{j\omega})$ the powerspectrum for $X(n)$.
- Compute $R_y(k)$ autocorrelation and $S_y(e^{j\omega})$ the powerspectrum for $Y(n)$.

a) Yes

• $X(n)$ is stationary because it's
an i.i.d. process

• $Y(n) = \underbrace{X(n) * p(n)}_{\text{LTI system}}$

$\Rightarrow y(n)$ is stationary

b) $R_x(\kappa) = \delta(\kappa) \Rightarrow S_x(e^{j\omega}) = 1$

c) $R_y(\kappa) = \delta(\kappa) * p(\kappa) * p(-\kappa)$

$$R_y(\kappa) = p(\kappa) * p(-\kappa)$$

$$R_y(\kappa) = \sum_{\ell=-\infty}^{\infty} p(\ell) p(\ell+\kappa)$$

(over)

Name: _____

$$\begin{aligned}S_y(e^{j\omega}) &= P(e^{j\omega}) P^*(e^{j\omega}) \\&= |P(e^{j\omega})|^2\end{aligned}$$

Name: _____

Problem 2.(50pt)

The forward projection is defined by the operation

$$\begin{aligned} p_\theta(r) &= \mathcal{FP}\{f(x, y)\} \\ &= \int_{-\infty}^{\infty} f(r \cos(\theta) - z \sin(\theta), r \sin(\theta) + z \cos(\theta)) dz \end{aligned}$$

The back projection is defined by the operation

$$\begin{aligned} h(x, y) &= \mathcal{BP}\{g_\theta(r)\} \\ &= \int_0^\pi g_\theta(x \cos(\theta) + y \sin(\theta)) d\theta \end{aligned}$$

Furthermore, define the composition of forward and back projection as the 2-D continuous space system $\mathcal{T}\{\cdot\}$

$$\begin{aligned} h(x, y) &= \mathcal{T}\{f(x, y)\} \\ &= \mathcal{BP}\{\mathcal{FP}\{f(x, y)\}\} \end{aligned}$$

a) Compute

$$p_\theta(r) = \mathcal{FP}\{\delta(x, y)\}$$

the forward projection of the signal $f(x, y) = \delta(x, y)$.

b) Show that

$$\frac{1}{\sqrt{x^2 + y^2}} = \mathcal{T}\{\delta(x, y)\} .$$

(Hint: Use the transformation of variables $x = r \cos \phi$ and $y = r \sin \phi$.)

c) Determine

$$w(x, y) = \mathcal{T}\{\delta(x - x_0, y - y_0)\} .$$

(Hint: You may want to make a graphical argument.)

d) Is the system $\mathcal{T}\{\cdot\}$ linear? Justify your answer.

e) Is the system $\mathcal{T}\{\cdot\}$ space invariant? Justify your answer.

f) Propose a method for inverting the system $\mathcal{T}\{\cdot\}$.

$$\begin{aligned} a) \quad p_\theta(r) &= \mathcal{FP}\{\delta(x, y)\} \\ &= \delta(r) \end{aligned}$$

Name: _____

b) $\mathcal{P}\{\delta(x, y)\} = \mathcal{B}\mathcal{P}\{\mathcal{F}\mathcal{P}\{\delta(x, y)\}\}$

$$= \mathcal{B}\mathcal{P}\{\delta(r)\}$$

$$= \int_0^\pi \delta(x \cos \theta + y \sin \theta) d\theta$$

define $r = \sqrt{x^2 + y^2}$

$$\varphi = \tan^{-1}(\frac{y}{x})$$

then

$$x \cos \theta + y \sin \theta = r \cos(\theta - \varphi)$$

$$= \int_0^\pi \delta(r \cos(\theta - \varphi)) d\theta$$

$$z = r \cos(\theta - \varphi)$$

$$\theta = \cos^{-1}(\frac{z}{r}) + \varphi$$

The Jacobian of the transformation is then

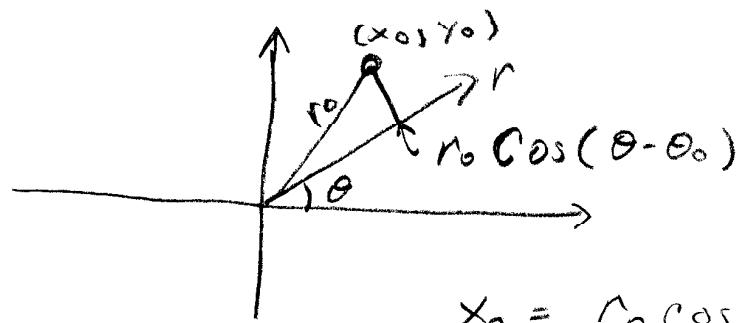
$$\begin{aligned} \left| \frac{d\theta}{dz} \right| &= \left| \frac{d \cos^{-1} z}{dz} \right| \\ &= \frac{1}{\sqrt{1-z^2}} \end{aligned}$$

Name: _____

$$\begin{aligned}
 & \int_{|\cos \varphi|}^{1/\cos \varphi} \delta(z) \frac{1}{r/|z^2-1|} dz + 2 \int_{-1/\cos \varphi}^{1/\cos \varphi} \delta(z) \frac{1}{r/|z^2-1|} dz \\
 &= \frac{1}{r} + 0
 \end{aligned}$$

$$\mathcal{F}\{\delta(x, y)\} = \frac{1}{r} = \frac{1}{\sqrt{x^2 + y^2}}$$

c)



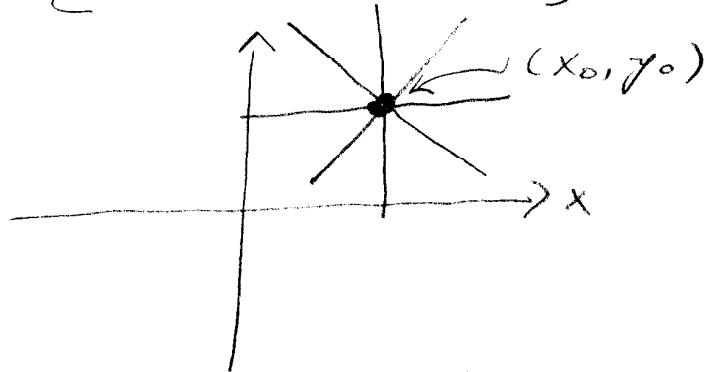
$$x_0 = r_0 \cos(\theta_0)$$

$$y_0 = r_0 \sin(\theta_0)$$

$$\rho_\theta(r) = \mathcal{F}P\{\delta(x_0, y_0)\}$$

$$= \mathcal{F}(r - r_0 \cos(\theta))$$

$$BP\{\delta(r - r_0 \cos \theta)\} = \rho_0(r)$$



$$\rho_0(r) = \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2}}$$

d) Yes, because the transformation is a composition of integrals, so it is linear.

e) Yes, because it is linear and its impulse response is pure invariance

$$T\{\delta(x - x_0, y - y_0)\} = \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2}}$$

f) Let

$$H(u, v) = CSFT\left\{\frac{1}{\sqrt{x^2 + y^2}}\right\}$$

and let

$$CSFT\{f(x, y)\} = F(u, v)$$

$$CSFT\{w(x, y)\} = W(u, v)$$

where

$$w(x, y) = T\{f(x, y)\}$$

then since this is a LSI system,
we have that

$$W(u, v) = H(u, v) F(u, v)$$

So to recover $f(x, y)$ from $w(x, y)$
we do the following

$$1) \quad w(u, v) = CSFT\{w(x, y)\}$$

$$2) \quad F(u, v) = \frac{w(u, v)}{H(u, v)}$$

$$3) \quad f(x, y) = CSFT^{-1}\{F(u, v)\}$$

Name: _____

Problem 3.(25pt)

Consider an MRI system for which

$$\omega = LM$$

where ω is the resonance frequency in radians per second, L is the Larmor constant and M is the magnetic field; and let $s(t)$ denote the RF signal used to excite the target.

Furthermore, assume that the magnetic field can be controlled via three gradient coils, so that the magnetic field is given by

$$M(x, y, z) = M_0 + xG_x + yG_y + zG_z$$

where (x, y, z) are the spatial coordinates in 3-D.

a) (Slice select step.) Initially, the gradients are set to $G_x = 0$, $G_y = 0$, and $G_z = G_0 \neq 0$, and target is excited with the RF pulse

$$s(t) = e^{jLM_0 t} \text{sinc}(t) .$$

For which values of (x, y, z) do the target atoms resonate? Justify your result.

b) Next the values of the x and y gradients are changed, but the z gradient remains fixed, so that $G_x = G_x(t)$, $G_y = G_y(t)$, and $G_z = G_0 \neq 0$. Let $\phi(t, x, y)$ be the phase of the signal radiated from a voxel of size (dx, dy, dz) at location (x, y) , $z = 0$, and time t .

Compute an expression for $\phi(t, x, y)$ assuming that $\phi(0, x, y) = 0$.

c) Let $A(x, y)$ be the magnitude of the signal radiated from the voxel of size (dx, dy, dz) at location (x, y) and $z = 0$. Compute the total radiated signal from a slice of thickness dz at position $z = 0$.

$$a) S(f) = \text{CTFT} \left\{ e^{jLM_0 t} \text{sinc}(t) \right\}$$

$$= \text{rect} \left(f - \frac{LM_0}{2\pi} \right)$$

Frequencies range from

$$\frac{LM_0}{2\pi} - \frac{1}{2} \leq f \leq \frac{LM_0}{2\pi} + \frac{1}{2}$$

$$LM_0 - \pi \leq \omega \leq LM_0 + \pi$$

Name: _____

$$\text{Since } \omega = L M(x, y, z)$$

$$L M_0 - \pi \leq L M(x, y, z) \leq L M_0 + \pi$$

$$M_0 - \frac{\pi}{L} \leq M(x, y, z) \leq M_0 + \frac{\pi}{L}$$

$$M_0 - \frac{\pi}{L} \leq M_0 + z g_0 \leq M_0 + \frac{\pi}{L}$$

$$-\frac{\pi}{L g_0} \leq z \leq \frac{\pi}{L g_0}$$

$$\begin{aligned} b) \quad \phi(x) &= \int_0^x L(M_0 + z g_x(z) + y g_y(z)) dz \\ &= L M_0 t + x \int_0^x g_x(z) dz \\ &\quad + \int_0^x L \int_0^z g_y(\tau) d\tau dz \end{aligned}$$

define

$$K_x(t) = L \int_0^t g_x(\tau) d\tau$$

$$K_y(t) = L \int_0^t g_y(\tau) d\tau$$

Name: _____

$$\phi(t) = LM_0 t + x k_x(t) + y k_y(t)$$

c) $R(t) = \int_{\mathbb{R}^2} A(x, y) e^{i\phi(t, x, y)} dx dy$

$$= \int_{\mathbb{R}^2} A(x, y) e^{iLM_0 t} e^{i(x k_x(t) + y k_y(t))} dx dy$$
$$= e^{iLM_0 t} \int_{\mathbb{R}^2} A(x, y) e^{i(x k_x(t) + y k_y(t))} dx dy$$