

EE 637 Final Exam
May 1, Spring 2002

Name: _____

Instructions:

- Follow all instructions carefully!
- This is a 120 minute exam containing **four** problems.
- You may **only** use your brain and a pencil (or pen) to complete this exam. You **may not** use your book, notes or a calculator.

Good Luck.

Name: _____

Problem 1.(25pt)

Consider the 2-D error diffusion algorithm specified by the equations

$$\begin{aligned} z(m, n) &= Q[y(m, n)] \\ e(m, n) &= y(m, n) - z(m, n) \\ y(m, n) &= x(m, n) + h(m, n) * e(m, n) \end{aligned}$$

where $x(m, n)$ is the input, $z(m, n)$ is the output, and $Q(\cdot)$ is a quantizer with the form

$$Q[y] = \begin{cases} 1 & \text{if } Y > 0.5 \\ 0 & \text{if } Y \leq 0.5 \end{cases}$$

where m is the column and n is the row.

a) For this part, assume that

$$h(m, n) = \delta(m - 1, n)$$

$$e(m, n) = 0 \text{ for } m < 0 \text{ or } n < 0$$

and $x(m, n)$ is given by

$x(m, n)$	$m = 0$	$m = 1$	$m = 2$	$m = 3$	$m = 4$
$n = 0$	0.25	0.25	0.25	0.25	0.25
$n = 1$	0.25	0.25	0.25	0.25	0.25
$n = 2$	0.25	0.25	0.25	0.25	0.25

Then compute the modified input $y(m, n)$

$y(m, n)$	$m = 0$	$m = 1$	$m = 2$	$m = 3$	$m = 4$
$n = 0$					
$n = 1$					
$n = 2$					

and compute the output $z(m, n)$.

$z(m, n)$	$m = 0$	$m = 1$	$m = 2$	$m = 3$	$m = 4$
$n = 0$					
$n = 1$					
$n = 2$					

b) For this part, assume that

$$h(m, n) = \delta(m - 1, n - 1)$$

$$e(m, n) = 0 \text{ for } m < 0 \text{ or } n < 0$$

and $x(m, n)$ is given by

$x(m, n)$	$m = 0$	$m = 1$	$m = 2$	$m = 3$	$m = 4$
$n = 0$	0.25	0.25	0.25	0.25	0.25
$n = 1$	0.25	0.25	0.25	0.25	0.25
$n = 2$	0.25	0.25	0.25	0.25	0.25

Then compute the modified input $y(m, n)$

$y(m, n)$	$m = 0$	$m = 1$	$m = 2$	$m = 3$	$m = 4$
$n = 0$					
$n = 1$					
$n = 2$					

and compute the output $z(m, n)$.

$z(m, n)$	$m = 0$	$m = 1$	$m = 2$	$m = 3$	$m = 4$
$n = 0$					
$n = 1$					
$n = 2$					

c) Calculate an expression for the display error $d(m, n) = z(m, n) - x(m, n)$ in terms of the quantizer error $e(m, n)$ and the filter $h(m, n)$.

d) Calculate an expression for the DSFT of the display error $D(e^{j\mu}, e^{j\nu}) = Z(e^{j\mu}, e^{j\nu}) - X(e^{j\mu}, e^{j\nu})$ in terms of the DSFT of the quantizer error $E(e^{j\mu}, e^{j\nu})$ and the filter $H(e^{j\mu}, e^{j\nu})$.

Name: _____

Problem 2.(25pt)

Consider the TV signal $r(t)$ formed by scanning the entire scene $f(x,y,t)$ with the form

$$f(x, y, t) = g(x)$$

where x is the horizontal coordinate (increasing to the right) that ranges over $0 < x < 1$, and y is the vertical coordinate (increasing toward the bottom) that ranges over $0 < y < 1$. The signal $r(t)$ is obtained using interlaced scanning with a total of 525 lines per frame and 30 frames per second. Assume that the time between the end of one scan line and the beginning of the next is zero.

- a) How many fields are scanned per second?
- b) How many lines are scanned per second?
- c) Write an expression for $r(t)$.
- d) Write an expression for $R(f)$ the CTFT of $r(t)$.
- e) Sketch the form of the magnitude of a typical spectrum $|R(f)|$.

Name: _____

Problem 3.(25pt)

Let the image $y(m, n)$ be formed by applying 2-D interpolation by a factor of $L = 2$ to the signal $x(m, n)$ with an interpolation filter of the form

$$\begin{aligned}h(m, n) = & 0.25\delta(m-1, n-1) + 0.5\delta(m, n-1) + 0.25\delta(m+1, n-1) \\& + 0.5\delta(m-1, n) + \delta(m, n) + 0.5\delta(m+1, n) \\& + 0.25\delta(m-1, n+1) + 0.5\delta(m, n+1) + 0.25\delta(m+1, n+1)\end{aligned}$$

a) Use a free boundary condition to compute $y(m, n)$ for the input $x(m, n)$ given by

$$\begin{matrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{matrix}$$

b) Compute $H(e^{j\mu}, e^{j\nu})$ the DSFT of the filter $h(m, n)$.

c) Write an expression for $Y(e^{j\mu}, e^{j\nu})$ in terms of $X(e^{j\mu}, e^{j\nu})$ and $H(e^{j\mu}, e^{j\nu})$.

d) What are the advantages and disadvantages of this interpolation method?

Name: _____

Problem 4.(25pt)

Consider the set of data $\{x_n\}_{n=0}^{N-1}$. We would like to estimate a “central value” using a method known as M-estimation. To do this we compute the following function

$$\begin{aligned} y &= f(x) \\ &= \arg \min_{\theta} \left\{ \sum_{n=0}^{N-1} \rho(x_n - \theta) \right\} \end{aligned}$$

where ρ is a function with the properties that $\rho(\Delta) \geq 0$ and $\rho(-\Delta) = \rho(\Delta)$.

a) What is the value of y when

$$\rho(\Delta) = \Delta^2$$

b) What is the value of y when

$$\rho(\Delta) = |\Delta|$$

c) Derive an expression for computing y when

$$\rho(\Delta) = |\Delta|^{0.5}$$

d) When $\rho(\Delta) = |\Delta|^{0.5}$, is the function $y = f(x)$ linear? Is it homogeneous? Justify your answers.