Random Variables

- Let X be a random variable on IR, then
 - -X is usually denoted by an upper case letter.
 - The cumulative distribution function is given by

$$P\{X \le x\} = F_X(x)$$

 If the probability density function exists, it is given by

$$p_X(x) = \frac{dF_X(x)}{dx}$$

so that

$$P\{x_1 < X \le x_2\} = F_X(x_2) - F_X(x_1)$$

= $\int_{x_1}^{x_2} p_X(\tau) d\tau$

- The expectation of X is given by

$$E[X] = \int_{-\infty}^{\infty} \tau p_X(\tau) d\tau$$

or more precisely by the Riemann-Stieltjes integral

$$E[X] = \int_{-\infty}^{\infty} \tau dF_X(\tau)$$

if it exists.

Deterministic versus Random

- ullet Let X and Z be random variables, and let $f(\cdot)$ be a function from $I\!\!R$ to $I\!\!R$
 - Is Y a random variable

$$Y = f(X)$$

- Is μ a random variable

$$\mu = E[X]$$

 $-\operatorname{Is} \hat{X}$ a random variable

$$\hat{X} = E[X|Z]$$

Properties of Expectation

• Expectation is linear

$$E[X+Y] = E[X] + E[Y]$$

• What is E[E[X|Y]] equal to?

$$E[E[X|Y]] = E[X]$$

• What is E[X|X,Y] equal to?

$$E[X|X,Y] = X$$

 \bullet When X, Y, and Z are (jointly) Gaussian

$$E[X|Y,Z] = aY + bZ + c$$

for some scalar values a, b, and c.

2-D Discrete Space Random Processes

- Notation
 - $-X_s$ is a pixel at position $s=(s_1,s_2)\in\mathcal{Z}^2$
 - -S denotes the set of 2-D Lattice points where $S \subset \mathbb{Z}^2$
- Definitions
 - Mean $\mu_s = E[X_s]$
 - Autocorrelation $R_{sr} = E[X_s X_r]$
 - Autocovariance $C_{sr} = E[(X_s \mu_s)(X_r \mu_r)]$
 - A process is said to be **second order** if $E[X_s]$ and $E[X_sX_r]$ exist for all $s \in S$ and $r \in S$.
 - A second order random process is said to be **wide** sense stationary if for all $s \in \mathbb{Z}^2$

$$\mu_s = \mu_{(0,0)}$$

$$C_{r,r+s} = C_{(0,0),s}$$

2-D Power Spectral Density

Let X_s be a zero mean wide sense stationary random process.

Define

$$\hat{X}_N(e^{j\mu}, e^{j\nu}) = \sum_{m=-N}^N \sum_{n=-N}^N X_{(m,n)} e^{j(m\mu + n\nu)}$$

• Then the power spectrum (i.e. energy spectrum per unit sample) is

$$\frac{1}{(2N+1)^2} \left| \hat{X}_N(e^{j\mu}, e^{j\nu}) \right|^2$$

The following limit does not converge!!

$$\lim_{N \to \infty} \frac{1}{(2N+1)^2} |\hat{X}_N(e^{j\mu}, e^{j\nu})|^2$$

Intuition - The spectral estimate remains noisy as the window size increases.

Definition of Power Spectral Density

• Definition of **Power Spectral Density**

$$S_x(e^{j\mu}, e^{j\nu}) \stackrel{\triangle}{=} \lim_{N \to \infty} \frac{1}{(2N+1)^2} E\left[\left| \hat{X}_N(e^{j\mu}, e^{j\nu}) \right|^2 \right]$$

Expectation removes the noise.

Weiner-Khintchine Theorem

• For a wide sense stationary random process, the power spectral density equals the Fourier transform of the autocorrelation

$$S_x(e^{j\mu}, e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} R(m, n) e^{-j(m\mu+n\nu)}$$

where

$$R(m,n) = E[X_{(0,0)}X_{(m,n)}]$$

Filtered Random Processes

• Consider the 2-D linear system

$$Y(m,n) = h(m,n) * X(m,n)$$

where X(m, n) is a 2-D wide sense stationary random process.

• It may be easily shown that

$$R_y(m,n) = h(m,n) * h(-m,-n) * R_x(m,n)$$
$$S_y(e^{j\mu}, e^{j\nu}) = |H(e^{j\mu}, e^{j\nu})|^2 S_x(e^{j\mu}, e^{j\nu})$$

White Noise

- Definition:
 - -X(m,n) independent identically distributed (i.i.d.) Gaussian random variables with distribution N(0,1).
- Then
 - -X(m,n) is wide sense stationary with

$$\mu(m, n) = 0$$

$$R_x(k, l) = E[X(0, 0)X(k, l)]$$

$$= \delta(k, l)$$

$$S_x(e^{j\mu}, e^{j\nu}) = DSFT\{R_x(k, l)\}$$

$$= 1$$

Filtered White Noise

- Definitions:
 - -X(m,n) independent identically distributed (i.i.d.) Gaussian random variables with distribution N(0,1).
 - -Y(m,n) = h(m,n) * X(m,n).
- Then
 - -Y(m,n) is wide sense stationary with

$$S_{y}(e^{j\mu}, e^{j\nu}) = |H(e^{j\mu}, e^{j\nu})|^{2} S_{x}(e^{j\mu}, e^{j\nu})$$

$$= |H(e^{j\mu}, e^{j\nu})|^{2} \cdot 1$$

$$R_{y}(k, l) = h(m, n) * h(-m, -n)$$

$$= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} h(m, n)h(m + k, n + l)$$

 $-R_y(k,l)$ is the autocorrelation of h(m,n) with itself.

Causal Prediction

- Y_s is a 2-D wide sense stationary Gaussian random process.
- Define
 - The past values are $Y_{\leq s} = \{Y_r : r \leq s\}$.
 - The minimum mean squared error (MMSE) predictor of Y_s given the past is

$$\hat{Y}_s = E[Y_s | Y_{< s}]$$

– The prediction error is $X_s = Y_s - \hat{Y}_s$.

Properties of Causal Predictors

• Fact 1: (WLOG, assume r < s.)

$$E[X_s X_r] = E[E[X_s X_r | Y_{< s}]]$$

$$= E[E[(Y_s - \hat{Y}_s)(Y_r - \hat{Y}_r) | Y_{< s}]]$$

$$= E[E[(Y_s - \hat{Y}_s) | Y_{< s}](Y_r - \hat{Y}_r)]$$

$$= E[(E[Y_s | Y_{< s}] - \hat{Y}_s)(Y_r - \hat{Y}_r)]$$

$$= E[(\hat{Y}_s - \hat{Y}_s)(Y_r - \hat{Y}_r)]$$

$$= E[0(Y_r - \hat{Y}_r)] = 0$$

- Fact 2: $\sigma^2 \stackrel{\triangle}{=} E[X_s^2]$ is the prediction variance.
- Fact 3: The predictor must be space invariant and linear.

$$\hat{Y}_s = \sum_{r > (0,0)} h_r Y_{s-r}$$

Autoregressive (AR) Processes

- Definitions:
 - $-Y_s$ 2-D wide sense stationary Gaussian random process.
 - $-h_s$ MMSE linear predictor for Y_s .
 - $-X_s = Y_s h_s * Y_s$ predictor error.
- If h_s is FIR, then Y_s is known as an autoregressive (AR) process.

Properites of AR Processes

• Remember that

$$X_s = Y_s - h_s * Y_s$$

- Then
 - We know that

$$Y(e^{j\mu}, e^{j\nu}) = \frac{1}{1 - H(e^{j\mu}, e^{j\nu})} X(e^{j\mu}, e^{j\nu})$$

- Since X_s is white noise,

$$R_x(s) = \sigma^2 \delta(s)$$

$$S_x(e^{j\mu}, e^{j\nu}) = \sigma^2$$

– So the power spectrum of Y_s is given by

$$S_y(e^{j\mu}, e^{j\nu}) = \frac{\sigma^2}{|1 - H(e^{j\mu}, e^{j\nu})|^2}$$

Spectral Estimate Using AR Processes

- Compute MMSE linear predictor \hat{h}_s for Y_s .
- Compute the prediction variance

$$\hat{\sigma}^2 = \frac{1}{|S|} \sum_{s \in S} |Y_s - h_s * Y_s|^2$$

where S is a finite set of points in plain, and |S| is the number of points in S.

• Estimate the power spectrum

$$S_y(e^{j\mu}, e^{j\nu}) = \frac{\hat{\sigma}^2}{\left|1 - \hat{H}(e^{j\mu}, e^{j\nu})\right|^2}$$

• Can produce a more accurate estimate of the power spectrum.

Generating AR Processes

- Select a causal prediction filter h_s .
- Apply IIR filter to white noise random process X_s

$$Y(e^{j\mu}, e^{j\nu}) = \frac{1}{1 - H(e^{j\mu}, e^{j\nu})} X(e^{j\mu}, e^{j\nu})$$

- Y_s is sometimes referred to as a white noise driven process.
- Do linear FIR prediction filters \hat{h}_s always form a stable IIR filter?
 - In 1-D, yes.
 - In 2-D, not always!
- Other problems:
 - Causal ordering of points may cause asymmetric artifacts in results.
 - Complexity increases rapidly with IIR filter order P.