Connected Component Analaysis

- Once region boundaries have been detected, it is often useful to extract regions which are not separated by a boundary.
- Any set of pixels which is not separated by a boundary is call connected.
- Each maximal region of connected pixels is called a connected component.
- The set of connected components partition an image into segments.
- Image segmentation is an useful operation in many image processing applications.

Connected Neighbors

- Let ∂s be a neighborhood system.
 - 4-point neighborhood system
 - 8-point neighborhood system
- Let c(s) be the set of neighbors that are connected to the point s.

For all s and r, the set c(s) must have the properties that

$$-c(s) \subset \partial s$$
$$-r \in c(s) \Leftrightarrow s \in c(r)$$

• Example:

$$c(s) = \{ r \in \partial s : X_r = X_s \}$$

• Example:

$$c(s) = \{ r \in \partial s : |X_r - X_s| < Threshold \}$$

• In general, computation of c(s) might be very difficult, but we won't worry about that now.

Connected Sets

• Definition: A region $R \subset S$ is said to be connected under c(s) if for all $s, r \in R$ there exists a sequence of M pixels, s_1, \dots, s_M such that

$$s_1 \in c(s), s_2 \in c(s_1), \dots, s_M \in c(s_{M-1}), r \in c(s_M)$$

i.e. there is a connected path from s to r.

Example of Connect Sets

• Consider the following image X_s

- Define $c(s) = \{r \in \partial s : X_r = X_s\}$
- Result
 - -4-point neighborhood $\Rightarrow S_0$ and S_1 are not connected sets
 - 8-point neighborhood $\Rightarrow S_0$ and S_1 are connected sets!

Region Growing

- Idea Find a connected set by growing a region from a seed point s_0
- Assume that c(s) is given

```
ClassLabel = 1
Initialize Y_r = 0 \text{ for all } r \in S
ConnectedSet(s_0, Y, ClassLabel) \{
B \leftarrow \{s_0\}
While B \text{ is not empty } \{
s \leftarrow \text{ any element of } B
B \leftarrow B - \{s\}
Y_s \leftarrow ClassLabel
B \leftarrow B \cup \{r : r \in c(s) \text{ and } Y_r = 0\}
\}
return(Y)
```

Region Growing Example (1)

Region Growing Example (2)

Region Growing Example (3)

Region Growing Example (4)

Region Growing Example (5)

Region Growing Example (6)

The list of	The image X						
$(i,j) \in B$			j				
(4,1)			0	1	2	3	4
(3,2)	i	0	1	0	0	0	0
(2,2)		1	1	1	0	0	0
		2	0	1	1		
		3	0	1	1	0	0
		4	0	1	0	0	1

Region Growing Example (7)

The list of
$$(i,j) \in B$$
 j $0 \ 1 \ 2 \ 3 \ 4$ $(2,2)$ $i \ 0 \ 1 \ 0 \ 0 \ 0$ $1 \ 1 \ 1 \ 0 \ 0 \ 0$ $2 \ 0 \ 1 \ 1 \ 0 \ 0$ $2 \ 0 \ 1 \ 1 \ 0 \ 0$ $4 \ 0 \ 1 \ 0 \ 0$ 1

Region Growing Example (8)

Region Growing Example (9)

Connected Components Extraction

- Iterate through each pixel in the image.
- Extract connected set for each unlabeled pixel.

```
ClassLabel = 1
Initialize Y_r = 0 for r \in S
For each s \in S {

if(Y_s = 0) {

ConnectedSet(s, Y, ClassLabel)

ClassLabel \leftarrow ClassLabel + 1
}
```

Connected Components Extraction Example (1)

$$s=(i,j);$$
 The image X $0 \ 1 \ 2 \ 3 \ 4$ $0 \ 1 \ 0 \ 0 \ 0 \ 0$ $1 \ 1 \ 1 \ 0 \ 0 \ 0$ $2 \ 0 \ 1 \ 1 \ 0 \ 0$ $0 \ 0$ $0 \ 0 \ 0$

Connected Components Extraction Example (2)

Connected Components Extraction Example (3)

Connected Components Extraction Example (4)