EE 637 Homework #1 Spring 2000 Due 1/26/98

- 1. Prove the following:
 - (a) The convolution property of the CTFT.
 - (b) The modulation property of the CTFT.
 - (c) The separability property of the CSFT.
 - (d) The rotation property of the CSFT.
- 2. Compute the CSFT of the following functions
 - (a) $rep_{2.4} \{ \delta(x, y) \} * rect(4x, 4y)$
 - (b) f(x,y) * rect(x/a, y/a)
 - (c) $(\Lambda(x/3)\operatorname{sinc}(y)) * \operatorname{sinc}(x/2, y/2)$
- 3. For each of the following D-T signals x(n):
 - i) Compute its DTFT using only the transform equation, the known properties of the DTFT, and the sampling equations.
 - ii) Sketch x(n) and $X(e^{j\omega})$.
 - (a) x(n) = 1
 - (b) $x(n) = \text{pulse}_5(n)$
 - (c) x(n) = sinc(n/10)
 - (d) $x(n) = \operatorname{sinc}((n-4)/4) \operatorname{pulse}_{9}(n)$
- 4. Let y(n) be a filtered version of x(n) where the filter's impulse response is given by h(n). Furthermore, let $X = [x(0), \dots, x(N-1)]^t$ and $Y = [y(0), \dots, y(N-1)]^t$ and assume that x(n) = 0 for n < 0 and $n \ge N$.
 - (a) Give a formula for y(n) in terms of x(n) and h(n).
 - (b) Find a matrix **A** so that $Y = \mathbf{A}X$. Give a precise expression for the elements of **A**.
 - (c) Write out the matrix **A** for N = 5.
 - (d) Show that **A** is a Toeplitz matrix.