Color

- What is color?
 - Color is a human perception (a percept).
 - Color is not a physical property...
 - But, it is related the the light spectrum of a stimulus.
- Can we measure the percept of color?
 - Semantic names red, green, blue, orange, yellow, etc.
 - These color semantics are largely culturally invariant, but not percise.
 - Currently, knownee has a accurate model for predicting perceived color from the light spectrum of a stimulus.
 - Currently, noone has an accurate model for predicting the percept of color.
- Can we tell if two colors are the same?
 - Two colors are the same if they match at all spectral wavelengths.
 - However, we will see that two colors are also the same if they match on a 3 dimensional subspace.
 - The values on this three dimensional subspace are called *tristimulus* values.
 - Two colors that match are called *metamers*.

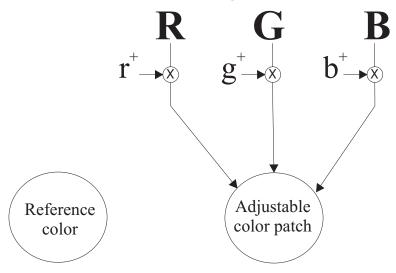
Matching a Color Patch

- Experimental set up:
 - Form a reference color patch with a known spectral distribution $I(\lambda)$.
 - Form a second adjustible color patch by adding light with three different spectral distributions $I_r(\lambda)$, $I_g(\lambda)$, and $I_b(\lambda)$.
 - Control the amplitude of each component with three individual positive constants r^+ , g^+ , and b^+ .
 - The total spectral content of the adjustible patch is then

$$r I_r(\lambda) + g I_g(\lambda) + b I_b(\lambda)$$
.

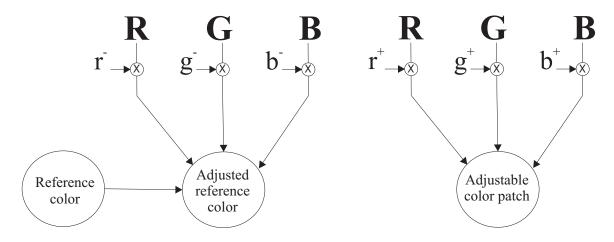
• Choose (r, g, b) to match the two color patches.

Simple Color Matching with Primaries



- ullet Choose (r^+,g^+,b^+) to match the two color patches.
- The values of (r, g, b) must be positive!
- Definitions:
 - $-\mathbf{R}$, \mathbf{G} , and \mathbf{B} are known as color primaries.
 - $-r^+$, g^+ , and b^+ are known as tristimulus values.
- Problem:
 - Some colors can not be matched, because they are too "saturated".
 - These colors result in values of r^+ , g^+ , or b^+ which are 0.
 - How can we generate negative values for r^+ , g^+ , or b^+ ?

Improved Color Matching with Primaries



- Add color primaries to reference color!
- This is equivalent to subtracting them from adjustable patch.
- Equivalent tristimulus values are:

$$r = r^{+} - r^{-}$$

 $g = g^{+} - g^{-}$
 $b = b^{+} - b^{-}$

- ullet In this case, r, g, and b can be both positive and negative.
- All colors may be matched.

Grassman's Law

- Grassman's law: Color perception is a 3 dimensional linear space.
- Superposition:
 - Let $I_1(\lambda)$ have tristimulus values (r_1, g_1, b_1) , and let $I_2(\lambda)$ have tristimulus values (r_2, g_2, b_2) .
 - Then $I_3(\lambda) = I_1(\lambda) + I_2(\lambda)$ has tristimulus values of

$$(r_3, g_3, b_3) = (r_1, g_1, b_1) + (r_2, g_2, b_2)$$

• This implies that tristimulus values can be computed with a general linear operators of the form

$$r = \int_0^\infty r_0(\lambda) I(\lambda) d\lambda$$
$$g = \int_0^\infty g_0(\lambda) I(\lambda) d\lambda$$
$$b = \int_0^\infty b_0(\lambda) I(\lambda) d\lambda$$

for some functions $r_0(\lambda)$, $g_0(\lambda)$, and $b_0(\lambda)$.

• Definition: $r_0(\lambda)$, $g_0(\lambda)$, and $b_0(\lambda)$ are known as color matching functions.

Measuring Color Matching Functions

• Consider when $I(\lambda) = \delta(\lambda - \lambda_o)$ is a line spectrum.

$$r = \int_0^\infty r_0(\lambda) \, \delta(\lambda - \lambda_0) d\lambda = r_o(\lambda)$$

$$g = \int_0^\infty g_0(\lambda) \, \delta(\lambda - \lambda_0) d\lambda = g_o(\lambda)$$

$$b = \int_0^\infty b_0(\lambda) \, \delta(\lambda - \lambda_0) d\lambda = b_o(\lambda)$$

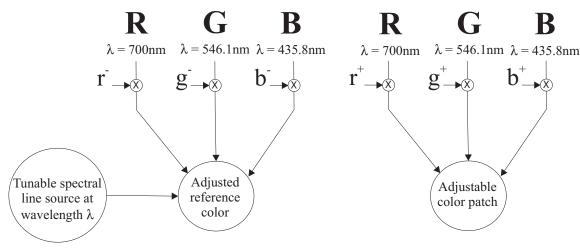
• Solution:

- Color match to a reference color generated by a pure spectral source.
- A tunable laser can be used to generate a reference color.

CIE Standard RGB Color Matching Functions

- An organization call CIE (Commission Internationale de l'Eclairage) defined all practical standards for color measurements (colorimetery).
- CIE 1931 Standard 2° Observer:
 - Uses color patches that subtended 2^{o} of visual angle.
 - $-\mathbf{R}, \mathbf{G}, \mathbf{B}$ color primaries are defined by pure line spectra (delta functions in wavelength) at 700nm, 546.1nm, and 435.8nm.
 - Reference color is a spectral line at wavelength λ .
- CIE 1965 10° Observer: A slightly different standard based on a 10° reference color patch and a different measurement technique.

RGB Color Matching Functions for CIE Standard 2° Observer

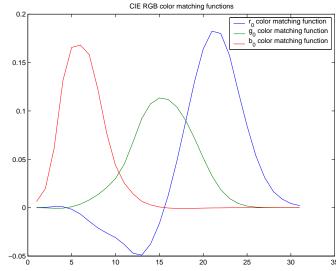


• The color matching functions are then given by

$$r_o(\lambda) = r^+ - r^-$$

 $g_o(\lambda) = g^+ - g^-$
 $b_o(\lambda) = b^+ - b^-$

where λ is the wavelength of the reference line spectrum.



Review of Colorimetry Concepts

- 1. **R**, **G**, **B** are color primaries used to generate colors.
- 2. (r, g, b) are tristimulus values used as weightings for the primaries.

$$\operatorname{Color} = [\mathbf{R}, \mathbf{G}, \mathbf{B}] \left[egin{array}{c} r \ g \ b \end{array}
ight]$$

3. $(r_0(\lambda), g_0(\lambda), b_0(\lambda))$ are the color matching functions used to compute the tristimulus values.

$$r = \int_0^\infty r_0(\lambda) I(\lambda) d\lambda$$
$$g = \int_0^\infty g_0(\lambda) I(\lambda) d\lambda$$
$$b = \int_0^\infty b_0(\lambda) I(\lambda) d\lambda$$

Problems with CIE RGB

- Some colors generate negative values of (r, g, b).
- This results from the fact that the color matching functions $r_0(\lambda)$, $g_0(\lambda)$, $b_0(\lambda)$ can be negative.
- The color primaries corresponding to CIE RGB are very difficult to reproduce. (pure spectral lines)
- Partial solution: Define new color matching functions $x_0(\lambda), y_0(\lambda), z_0(\lambda)$ such that:
 - Each function is positive
 - Each function is a linear combination of $(r_0(\lambda), g_0(\lambda), b_0(\lambda))$.

CIE XYZ Definition

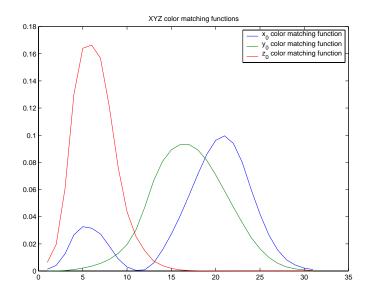
• CIE XYZ in terms of CIE RGB so that

$$\left[egin{array}{c} x_0(\lambda) \ y_0(\lambda) \ z_0(\lambda) \end{array}
ight] = \mathbf{M} \left[egin{array}{c} r_0(\lambda) \ g_0(\lambda) \ b_0(\lambda) \end{array}
ight]$$

where

$$\mathbf{M} = \begin{bmatrix} 0.490 & 0.310 & 0.200 \\ 0.177 & 0.813 & 0.010 \\ 0.000 & 0.010 & 0.990 \end{bmatrix}$$

• This transformation is chosen so that $x_0(\lambda) \geq 0$, $y_0(\lambda) \geq 0$, and $z_0(\lambda) \geq 0$.



XYZ Color Transformations

• The XYZ tristimulus values may then be calculated as:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \int_0^\infty \begin{bmatrix} x_0(\lambda) \\ y_0(\lambda) \\ z_0(\lambda) \end{bmatrix} I(\lambda) d\lambda = \int_0^\infty \mathbf{M} \begin{bmatrix} r_0(\lambda) \\ g_0(\lambda) \\ b_0(\lambda) \end{bmatrix} I(\lambda) d\lambda = \mathbf{M} \int_0^\infty \begin{bmatrix} r_0(\lambda) \\ g_0(\lambda) \\ b_0(\lambda) \end{bmatrix} I(\lambda) d\lambda$$

• So we have that

$$\left[egin{array}{c} X \ Y \ Z \end{array}
ight] = \mathbf{M} \left[egin{array}{c} r \ g \ b \end{array}
ight]$$

• RGB can be computed from XYZ as:

$$\begin{bmatrix} r \\ g \\ b \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

- Comments:
 - Always use upper case letters for XYZ!
 - -Y value represents luminance component of image

XYZ Color Primaries

• The XYZ color primaries are computed as

$$Color = [\mathbf{X}, \mathbf{Y}, \mathbf{Z}] \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = [\mathbf{R}, \mathbf{G}, \mathbf{B}] \begin{bmatrix} r \\ g \\ b \end{bmatrix} = [\mathbf{R}, \mathbf{G}, \mathbf{B}] \mathbf{M}^{-1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

• So, theoretically

$$[\mathbf{X}, \mathbf{Y}, \mathbf{Z}] = [\mathbf{R}, \mathbf{G}, \mathbf{B}] \mathbf{M}^{-1}$$

where

$$\mathbf{M}^{-1} = \begin{bmatrix} 1.3644 & -0.8958 & -0.4686 \\ -0.5148 & 1.4252 & 0.0896 \\ 0.0052 & -0.0144 & 1.0092 \end{bmatrix}$$

- Problem: Negative values of RGB mean that XYZ primaries can not be realized from physical combinations of CIE RGB.
- Fact: XYZ primaries are imaginary! They can not be realized physically.

Chromaticity Coordinates

- \bullet Tristimulus values X,Y,Z specify a color's:
 - Lightness light or dark
 - Huge red, orange, yellow, green, blue, purple
 - Saturation pink-red; pastel-flouresent; baby blue-deep blue
- The *chromaticity* specifies the huge and saturation, but not the lightness.

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z}$$

- Properties of chromaticity coordinates
 - -x+y+z=1 Third compent can always be computed from first two.
 - Typically, (x, y) are specified
 - Striaght lines in XYZ map to straight lines in (x, y).

Projection Property of Chromaticity Coordinates

• Let X_1, Y_1, Z_1 and X_2, Y_2, Z_2 be two different colors and let

$$\alpha(X_3, Y_3, Z_3) = \alpha(X_1, Y_1, Z_1) + \beta(X_2, Y_2, Z_2)$$

then

$$(x_{3}, y_{3}) = \left(\frac{\alpha X_{1} + \beta X_{2}}{X_{3} + Y_{3} + Z_{3}}, \frac{\alpha Y_{1} + \beta Y_{2}}{X_{3} + Y_{3} + Z_{3}}\right)$$

$$= \left(\frac{\alpha X_{1}}{X_{3} + Y_{3} + Z_{3}}, \frac{\alpha Y_{1}}{X_{3} + Y_{3} + Z_{3}}\right) + \left(\frac{\beta X_{2}}{X_{3} + Y_{3} + Z_{3}}, \frac{\beta Y_{2}}{X_{3} + Y_{3} + Z_{3}}\right)$$

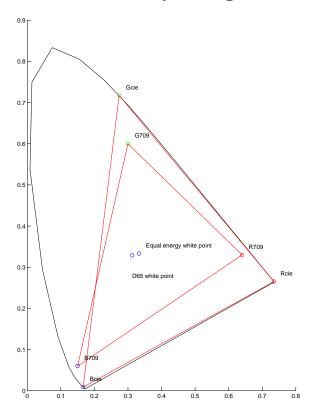
$$= \frac{X_{1} + Y_{1} + Z_{1}}{X_{3} + Y_{3} + Z_{3}} \left(\frac{\alpha X_{1}}{X_{1} + Y_{1} + Z_{1}}, \frac{\alpha Y_{1}}{X_{1} + Y_{1} + Z_{1}}\right)$$

$$+ \frac{X_{2} + Y_{2} + Z_{2}}{X_{3} + Y_{3} + Z_{3}} \left(\frac{\beta X_{2}}{X_{2} + Y_{2} + Z_{2}}, \frac{\beta Y_{2}}{X_{2} + Y_{2} + Z_{2}}\right)$$

$$= \alpha \frac{X_{1} + Y_{1} + Z_{1}}{X_{3} + Y_{3} + Z_{3}} (x_{1}, y_{1}) + \beta \frac{X_{2} + Y_{2} + Z_{2}}{X_{3} + Y_{3} + Z_{3}} (x_{2}, y_{2})$$

$$= \alpha'(x_{1}, y_{1}) + \beta'(x_{2}, y_{2})$$

Chromaticity Diagrams



- Linear combinations of colors form straight lines
- Horse shoe shape results form XYZ color matching functions
- Straight line connecting red and blue is referred to as "line of purples"
- RGB primaries form triangular color gammut
- Center is white

What is White Point?

• What is white point:

- Absolute scaling of (r, g, b) values required for calibrated image data. This determines the color associated with (r, g, b) = (1, 1, 1).
- Color of illuminant in scene. By changing white point, one can partially compensate for changes due to illumination color. (camcorders)
- Color of paper in printing applications. Color of paper is brightest white usually possible. Should a color photocopier change the color of the paper? Usually no.

Defining White Point?

• Ideally white point specifies the spectrum of the color white.

$$I_w(\lambda)$$

• This turn specifies XYZ coordinates

$$X_w = \int_0^\infty x_0(\lambda) I_w(\lambda) d\lambda$$

$$Y_w = \int_0^\infty y_0(\lambda) I_w(\lambda) d\lambda$$

$$Z_w = \int_0^\infty z_0(\lambda) I_w(\lambda) d\lambda$$

which in turn specifies chromaticity components

$$x_w = \frac{X_w}{X_w + Y_w + Z_w}$$
$$y_w = \frac{Y_w}{X_w + Y_w + Z_w}$$

- Comments
 - White point is usually specified in chromaticity.
 - Knowing (x_w, y_w) does not determine $I_w(\lambda)$.

Typical White Points

• Equal energy white:

$$I_{EE}(\lambda) = 1$$

 $(x_{EE}, y_{EE}) = (1/3, 1/3)$

• D65 illuminant (specified for PAL): $I_{65}(\lambda) = \text{Natural Sun Light}$

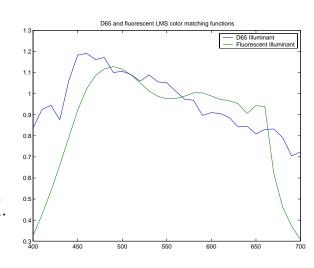
$$(x_{65}, y_{65}) = (0.3127, 0.3290)$$

• C illuminant (specified for NTSC):

$$I_c(\lambda) = \text{not defined}$$

 $(x_{65}, y_{65}) = (0.310, 0.316)$

- Comments:
 - Equal energy white is not commonly used.
 - -C was the original standard for NTSC video.
 - -D65 has become the dominant standard.
 - -D65 corresponds to a color temperature of 6500° K.



White Point Correction

- Standard color matching functions assume equal energy white point
 - Any standard color matching function assumes unit area normalization.

$$1 = \int_0^\infty r_0(\lambda) d\lambda$$
$$1 = \int_0^\infty g_0(\lambda) d\lambda$$
$$1 = \int_0^\infty b_0(\lambda) d\lambda$$

- Therefore:

$$I_{EE}(\lambda) = 1 \Rightarrow (r, g, b) = (1, 1, 1)$$

• White point corrected/gamma corrected data is compute as:

$$ilde{r} \stackrel{ riangle}{=} \left(rac{r}{r_{wp}}
ight)^{1/\gamma} \ ilde{g} \stackrel{ riangle}{=} \left(rac{g}{g_{wp}}
ight)^{1/\gamma} \ ilde{b} \stackrel{ riangle}{=} \left(rac{b}{b_{wp}}
ight)^{1/\gamma}$$

- So,

$$(\tilde{r}, \tilde{g}, \tilde{b}) = (1, 1, 1) \Rightarrow (r, g, b) = (r_{wp}, g_{wp}, b_{wp})$$

where (r_{wp}, g_{wp}, b_{wp}) is the desired white point.

Typical RGB Color Primaries

• NTSC 601 standard primaries:

$$(x_r, y_r) = (0.67, 0.33)$$

 $(x_g, y_g) = (0.21, 0.71)$
 $(x_b, y_b) = (0.14, 0.08)$

- These color primaries are not typically used anymore.
- PAL standard primaries:

$$(x_r, y_r) = (0.64, 0.33)$$

 $(x_g, y_g) = (0.29, 0.60)$
 $(x_b, y_b) = (0.15, 0.06)$

- PAL is the TV standard used in Europe
- Rec. 709 standard primaries:

$$(x_r, y_r) = (0.5541, 0.2857)$$

 $(x_g, y_g) = (0.3000, 0.6000)$
 $(x_b, y_b) = (0.1500, 0.0600)$

- More saturated then 601 primaries.
- Most commonly used primary colors for display monitors and TV's.

Example: 601 Color Primaries With EE White Point

• Find a transformation **M** so that

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{M} \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

- Columns of \mathbf{M} are proportional to color primaries.
- Rows of **M** sum to $1 \Rightarrow$ equal energy white point.
- Solve the equation

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.67 & 0.21 & 0.14 \\ 0.33 & 0.71 & 0.08 \\ 0.00 & 0.08 & 0.78 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

• This results in $[\alpha_1, \alpha_2, \alpha_3] = (0.9867, 0.8148, 1.1985)$, and

$$\mathbf{M} = \begin{bmatrix} 0.67 & 0.21 & 0.14 \\ 0.33 & 0.71 & 0.08 \\ 0.00 & 0.08 & 0.78 \end{bmatrix} \begin{bmatrix} 0.9867 & 0 & 0 \\ 0 & 0.8148 & 0 \\ 0 & 0 & 1.1985 \end{bmatrix} = \begin{bmatrix} 0.6611 & 0.1711 & 0.1678 \\ 0.3256 & 0.5785 & 0.0959 \\ 0 & 0.0652 & 0.9348 \end{bmatrix}$$

Example: 601 Color Primaries With C White Point

• Find a transformation **M** so that

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{M} \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

where

- Columns of \mathbf{M} are proportional to color primaries.
- Rows of **M** sum to $[0.310, 0.316, 0.374] \times constant$.
- Middle rows of **M** sum to $1 \Rightarrow$ unit luminance.
- Solve the equation

$$\frac{1}{0.316} \begin{bmatrix} 0.310 \\ 0.316 \\ 0.374 \end{bmatrix} = \begin{bmatrix} 0.9810 \\ 1 \\ 1.1835 \end{bmatrix} = \begin{bmatrix} 0.67 & 0.21 & 0.14 \\ 0.33 & 0.71 & 0.08 \\ 0.00 & 0.08 & 0.78 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

• This results in $[\alpha_1, \alpha_2, \alpha_3] = (0.9060, 0.8259, 1.4327)$, and

$$\mathbf{M} = \begin{bmatrix} 0.67 & 0.21 & 0.14 \\ 0.33 & 0.71 & 0.08 \\ 0.00 & 0.08 & 0.78 \end{bmatrix} \begin{bmatrix} 0.9060 & 0 & 0 \\ 0 & 0.8259 & 0 \\ 0 & 0 & 1.4327 \end{bmatrix} = \begin{bmatrix} 0.6070 & 0.1734 & 0.2006 \\ 0.2990 & 0.5864 & 0.1146 \\ 0 & 0.0661 & 1.1175 \end{bmatrix}$$

Analog NTSC Color Standard

• First, define the "luminance" component of the gamma-corrected RGB values

$$Y = 0.326\tilde{r} + 0.578\tilde{g} + 0.096\tilde{b}$$

- Then, define the YPrPb coordinates system as $\begin{bmatrix} Y \\ Pb \\ Pr \end{bmatrix} = \begin{bmatrix} Y \\ \tilde{b} Y \\ \tilde{r} Y \end{bmatrix}$
- Then, YUV coordinates are defined as $\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} Y \\ Pb/2.03 \\ Pr/1.14 \end{bmatrix}$
- Then, YIQ is a 33° rotation of the UV color space

$$\begin{bmatrix} \tilde{Y} \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\sin 33^o & \cos 33^o \\ 0 & \cos 33^o & \sin 33^o \end{bmatrix} \begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & -0.322 \\ 0.211 & -0.523 & 0.312 \end{bmatrix} \begin{bmatrix} \tilde{r} \\ \tilde{g} \\ \tilde{b} \end{bmatrix}$$

- Comments:
 - Technically, YPbPr, YUV and YIQ assume NTSC 601 primaries with C white point.
 - Same transformations may be used with other white point and color primaries.
 - All transformations are performed on gamma corrected RGB.
 - Nominal bandwidth for Y, I, and Q channels are 4.2MHz, 1.5MHz, and 0.6MHz.

Digital NTSC Color Standard

- Assuming that $(\tilde{r}, \tilde{g}, \tilde{b})$ are scaled from 0 to 1, then...
 - First, define the "luminance" component of the gamma-corrected RGB components

$$Y = 0.326\tilde{r} + 0.578\tilde{g} + 0.096\tilde{b}$$

- Values of YCrCb are then given by

$$\begin{bmatrix} Y_d \\ c_b \\ c_r \end{bmatrix} = \begin{bmatrix} 219Y + 16 \\ \frac{112(\tilde{b} - Y)}{0.886} + 128 \\ \frac{112(\tilde{r} - Y)}{0.701} + 128 \end{bmatrix}$$

• Complete transformation assuming $(\tilde{r}, \tilde{g}, \tilde{b})$ range from 0 to 255

$$\begin{bmatrix} Y_d \\ c_b \\ c_r \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \frac{1}{255} \begin{bmatrix} 65.738 & 129.057 & 25.064 \\ -37.945 & -74.494 & 112.439 \\ 112.439 & -94.154 & -18.285 \end{bmatrix} \begin{bmatrix} \tilde{r} \\ \tilde{g} \\ \tilde{b} \end{bmatrix}$$

• Again, transformations may be used with other color primaries and white points.

Opponent Color Spaces

- Perception of color is usually not best represented in RGB.
- A better model of HVS is the so-call opponent color model
- Opponent color space is has three components:
 - $-O_1$ is luminance component
 - $-O_2$ is the red-green channel (G-R)
 - $-O_3$ is the blue-yellow channel (B-Y)

• Comments:

- People don't perceive redish-greens, or bluish-yellows.
- As we discussed, O_1 is has a bandpass CSF.
- $-O_2$ and O_3 have low pass CSF's with lower frequency cut-off.

• Practical consequences:

- Analog video has less bandwidth in I and Q channels.
- Chromanance components are typically subsampled 2-to-1 in image compression applications.
- Black text on white paper is easy to read. (couples to O_1)
- Yellow text on white paper is difficult to read. (couples to O_3)

Opponent Color Space of Wandell

• First define the LMS color system which is approximately given by

$$\begin{bmatrix} L \\ M \\ S \end{bmatrix} = \begin{bmatrix} 0.2430 & 0.8560 & -0.0440 \\ -0.3910 & 1.1650 & 0.0870 \\ 0.0100 & -0.0080 & 0.5630 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

• The opponent color space transform is then¹

$$\begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -0.59 & 0.80 & -0.12 \\ -0.34 & -0.11 & 0.93 \end{bmatrix} \begin{bmatrix} L \\ M \\ S \end{bmatrix}$$

• Putting these transforms together, we get the following

$$\begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix} = \begin{bmatrix} 0.2706 & 0.7708 & 0.0136 \\ -0.1484 & 0.2064 & -0.0595 \\ -0.0904 & -0.3510 & 0.5134 \end{bmatrix} \begin{bmatrix} r_{CIE} \\ g_{CIE} \\ b_{CIE} \end{bmatrix}$$

- Comments:
 - $-O_1$ is luminance component
 - $-O_2$ is referred to as the red-green channel (G-R)
 - $-O_3$ is referred to as the blue-yellow channel (B-Y)
 - Also is the work of Mullen '85² and associated color transforms.³

¹B. A. Wandell, Foundations of Vision, Sinauer Associates, Inc., Sunderland MA, 1995.

²K. T. Mullen, "The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings," *J. Physiol.*, vol. 359, pp. 381-400, 1985.

³B. W. Kolpatzik and C. A. Bouman, "Optimized Error Diffusion for Image Display," *Journal of Electronic Imaging*, vol. 1, no. 3, pp. 277-292, July 1992.

Paradox?

- Why is blue text on yellow paper is easy to read??
- Shouldn't this be hard to read since it stimulates the yellow-blue color channel?

Better Understanding Opponent Color Spaces

• The XYZ to opponent color transformation is:

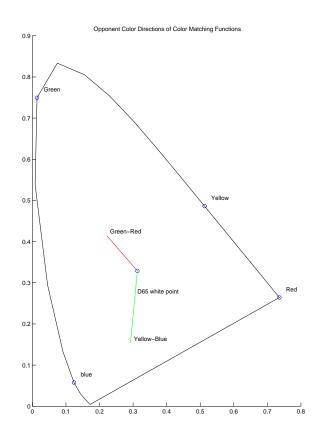
$$\begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix} = \begin{bmatrix} 0.2430 & 0.8560 & -0.0440 \\ -0.4574 & 0.4279 & 0.0280 \\ -0.0303 & -0.4266 & 0.5290 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} v_y \\ v_{gr} \\ v_{yb} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

where v_y , v_{gr} , and v_{yb} are row vectors in the XYZ color space.

- These row vectors are sometimes referred to as *contravariant vectors*.
- They are not orthogonal!

$$\begin{bmatrix} v_y \\ v_{gr} \\ v_{yb} \end{bmatrix} \begin{bmatrix} v_y^t v_{gr}^t v_{yb}^t \end{bmatrix} \neq \text{identity matrix}$$

• They are not the basis functions for the opponent color space.



Basis Vectors for Opponent Color Spaces

• The transformation from opponent color space to XYZ is:

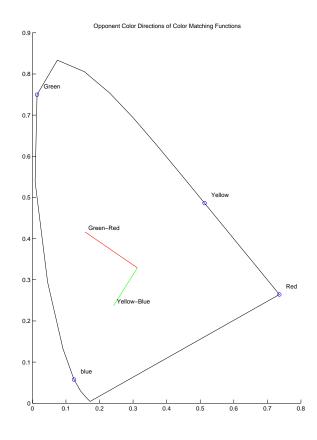
$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.9341 & -1.7013 & 0.1677 \\ 0.9450 & 0.4986 & 0.0522 \\ 0.8157 & 0.3047 & 1.9422 \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix} = \begin{bmatrix} c_y c_{gr} c_{yb} \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix}$$

where c_y , c_{gr} , and c_{yb} are column vectors.

- These column vectors are sometimes referred to as *co*variant vectors.
- They are orthogonal to the row vectors v_y , v_{gr} , and v_{yb} .

$$\left[egin{array}{c} v_y \ v_{gr} \ v_{yb} \end{array} \right] \left[c_y \, c_{gr} \, c_{yb} \right] = \mathrm{identity \ matrix}$$

• They are the basis functions for the opponent color space.



Solution to Paradox?

• Why is blue text on yellow paper is easy to read??

• Solution:

- The blue-yellow combination generates the input v_{yb} .
- This input vector stimulates all three opponent channels because it is not orthononal to c_y , c_{gr} , and c_{yb} .
- In particlar, it strongly stimulates c_y because it is **not** iso-luminant.

Perceptually Uniform Color Spaces

- Problem: Small changes in XYZ may result in small or large perceptual changes.
- Solution: Formulate a perceptually uniform color space.
 - Select (X_0, Y_0, Z_0) to be the white point or illuminant.
 - Then compute (approximate formula)

$$L = 100(Y/Y_0)^{1/3}$$

$$a = 500 \left[(X/X_0)^{1/3} - (Y/Y_0)^{1/3} \right]$$

$$b = 200 \left[(Y/Y_0)^{1/3} - (Z/Z_0)^{1/3} \right]$$

- Color errors can then be measured as:

$$\Delta E = \sqrt{(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2}$$

• Danger:

- Lab color space is designed for low spatial frequencies.
- Direct application to images works poorly.
- Lab formulation ignores different form of CSF for luminance and chrominance spaces.

Color Image Quality Metrics

- A number of attempts have been made to combine CSF modeling with Lab color space:
 - Kolpatzik and Bouman '95 (YCxCz/Lab color metric)⁴
 - Zhang and Wandell '97 (S-CIELAB color metric)⁵
- Objective:
 - Combine models of spatial frequency response and color space nonuniformities.
 - Particularly important form modeling halftone quality due to high frequency content.

⁴B. W. Kolpatzik and C. A. Bouman, "Optimized Universal Color Palette Design for Error Diffusion," *Journal of Electronic Imaging*, vol. 4, no. 2, pp. 131-143, April 1995.

⁵X. Zhang and B. A. Wandell, "A spatial extension of CIELAB for digital color image reproduction," Society for Information Display Journal, 1997.

Image Quality Metric Using YCxCz/Lab

• YCxCz color space is defined as:

$$Y_y = 116(Y/Y_0)$$

 $c_x = 500 [(X/X_0) - (Y/Y_0)]$
 $c_z = 200 [(Y/Y_0) - (Z/Z_0)]$

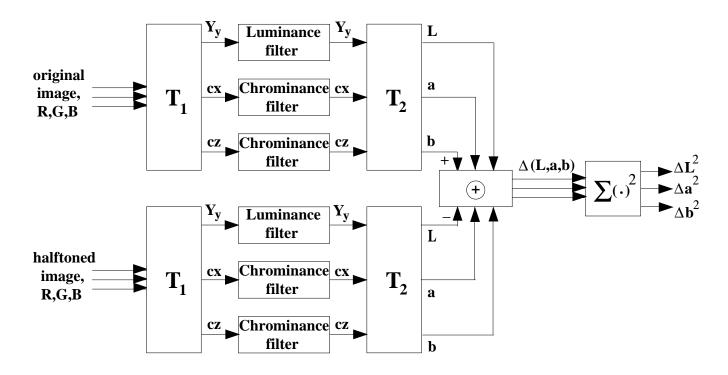
 \bullet Apply different filters for luminance and chromanance where f is in units of cycles/degree.

$$W_y(f) = \begin{cases} \exp\{-0.4385(f - 2.2610)\} & f \ge 2.2610 \\ 1 & f < 2.2610 \end{cases}$$

$$W_{cx}(f) = W_{cz}(f) = \begin{cases} \exp\{-0.1761(f - 0.2048)\} & f \ge 0.2048 \\ 1 & f < 0.2048 \end{cases}$$

• Then transform filtered YCxCz image components to Lab and compute ΔE .

Flow Diagram for YCxCz/Lab Image Quality Metric



- ullet Low pass filters are applied in linear domain \Rightarrow more accurate for color matching of halftones.
- Nonlinear Lab transformation accounts for perceptural nonuniformities of color space.