EE 637 Final Exam May 9, Spring 1997

Name:		
mame:		

Instructions: Two hour exam, with no books, notes or calculators.

Problem 1.(20pt)

An imaging system has an impulse respose of

$$g(m,n) = \delta(m,n) + \alpha h(m,n)$$

where $0 < \alpha << 1$, and h(m, n) is defined by

$$h(m,n) = \begin{cases} 1/9 & |m| \le 1 \text{ and } |n| \le 1 \\ 0 & \text{otherwise} \end{cases}.$$

- a) Compute the frequency response of the imaging system, $G(e^{j\mu}, e^{j\nu})$, and explain the effect of this response on images.
- b) Compute a filter $F(e^{j\mu}, e^{j\nu})$ that approximately corrects for the distortion of the imaging system by using the relationship that

$$\frac{1}{1+a} \approx 1-a$$

c) Compute the impulse response of the correcting filter, f(m, n), and explain the effect of the filter on images.

Problem 2.(20pt)

Let $X_{m,n}$ be i.i.d. samples from the distribution N(0,1). Let $Y_{m,n}$ be a derived from $X_{m,n}$ using the difference equation

$$Y_{m,n} = X_{m,n} + aY_{m-1,n} + aY_{m,n-1} - a^2Y_{m-1,n-1}$$
(1)

where 0 < a < 1.

- a) Compute, $S_y(e^{j\mu,j\nu})$, the power spectrum of $Y_{m,n}$.
- b) Is equation (1) a stable system? Prove or disprove your result.

Let $Z_{m,n}$ be derived from $Y_{m,n}$ by applying a filter $h_{m,n}$.

c) Determine all filters $h_{m,n}$ so that the samples $Z_{m,n}$ are i.i.d.

Problem 3.(20pt)

A subject is presented with a achromatic visual stimulus (i.e. an image) at a distance d and with a luminance of

$$L(x,y) = A + B\sin(2\pi f(x+y))$$

where x an y are horizontal and vertical coordinates of the stimulus respectively.

a) Compute the number of cycles per degree of the stimulus in terms of f and d.

Next, the value of B is adjusted so that the subject can detect the sine wave grating 50% of the time.

- b) Sketch the value of the ratio B/A as a function of the value A. Explain the shape of your plot. Assume the f is choosen so that the stimulus is at approximately 5 cycles per degree.
- c) Sketch the value of the ratio B/A as a function of the value f. Explain the shape of your plot. Assume the A is choosen to be in the photopic range of the visual system.

Problem 4.(20pt)

Let $X_{m,n}$ be a discrete valued random image with i.i.d pixels that take on values in the set $\{0, 1, \dots, 6\}$. Furthermore, let the marginal distribution of $X_{m,n}$ be given by

x	0	1	2	3	4	5	6
$P\{X_{m,n} = x\}$	0.40	0.30	0.08	0.07	0.06	0.05	0.04

Design a Huffman code for the symbols of this image and do the following:

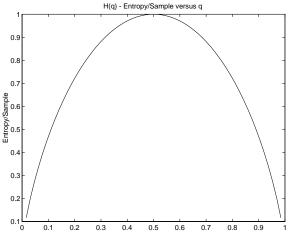
- a) Show the binary tree for your code. Label the probability of each node and the binary value for each branch.
- b) List the binary code for each symbol.
- c) Compute the expected code length.
- d) Give a strategy for designing a code with reduced bit rate. Be specific, and explain how much the bit rate may be reduced.

Problem 5.(20pt)

Let $X_{m,n}$ be a random binary valued image which you need to compress using a lossless predictive coder. In order to design the coder, you first measure statistics from sample images, $x_{m,n}$, to form a histogram $h_{i,j,k}$. The histogram is given by

$x_{m,n} = i$	$x_{m-1,n} = j$	$x_{m,n-1} = k$	$h_{i,j,k}$
0	0	0	30
0	0	1	6
0	1	0	2
0	1	1	2
1	0	0	2
1	0	1	2
1	1	0	6
1	1	1	14

The following figure is a plot of the function $H(q) = -q \log_2(q) - (1-q) \log_2(1-q)$



- a) Compute an estimate for for the marginal distribution of $X_{m,n}$, $p_i = P\{X_{m,n} = i\}$.
- b) Given the result of part a) and the entropy plot, compute the per sample entropy of $X_{m,n}$ under the assumption that pixels are i.i.d.
- c) Compute an estimate for the joint distribution of $(X_{m-1,n}, X_{m,n-1})$,

$$g_{jk} = P\{X_{m-1,n} = j, X_{m,n-1} = k\}$$
.

- d) Compute the predictor $\hat{X}(j,k)$ which minimizes the probability of error given $X_{m-1,n}=j, X_{m,n-1}=k.$
- e) Define the image of prediction errors $\mathbb{Z}_{m,n}$ so that

$$Z_{m,n} = \begin{cases} 0 & X_{m,n} = \hat{X}(j,k) \\ 1 & X_{m,n} \neq \hat{X}(j,k) \end{cases}$$

Given the result of part d) and the entropy plot, compute the per sample entropy of $Z_{(m,n)}$ under the assumption that its pixels are i.i.d.