
Purdue University: Digital Image Processing Laboratories 1

Digital Image Processing Laboratory:

Achromatic Baseline JPEG encoding Lab
December 2, 1998

1 Introduction

JPEG is an industry standard for digital compression and coding of continuous-tone still
images. Since it is a simple transform coder with good performance, it became very popular.
It was developed as a general-purpose standard for many continuous-tone image applications,
jointly by ISO and CCITT as the JPEG stands for ’Joint Picture Expert Group’. There are
4 kinds of operation modes defined in JPEG standard.

sequential mode: block-by-block encoding in scan order

progressive mode: image is built-up from coarse to clear detail

lossless mode: instead of DCT, it uses predictive coding based on a neighborhood of 3
samples.

hierarchical mode:lower-resolution image is encoded first, upsampled and interpolated to
predict the full-resolution image and the prediction error is encoded with one of above
3 operation modes.

In this lab, we will explore the baseline JPEG coder which is the simplest version of
DCT-based sequential coder. Moreover, we will handle 8 bit luminance component only for
simplicity.

2 Baseline JPEG Encoding

Figure 1 illustrates the main procedures of the DCT-based encoder. The source image is
partitioned into 8x8 blocks. Then, each block is transformed through FDCT and quantized.
After the final step of entropy coding, we can get the compressed JPEG data.

2.1 8x8 FDCT, IDCT

The source image component’s samples are grouped into 8x8 blocks. Each block is trans-
formed by the forward DCT into a set of 64 values. These are called DCT-coefficients and
they are further categorized as one DC coefficient and 63 AC coefficients. The 8x8 blocks
are partitioned as in Figure 2 and the sample orientation is also shown.

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

Purdue University: Digital Image Processing Laboratories 2

DCT-based encoder8 × 8 blocks

FDCT Quantizer Entropy
encoder

Table
specifications

Table
specifications

Source
image data

Compressed
image data

Figure 1: DCT-based JPEG encoder simplified diagram

C i
00s s

ss

ss

s

s

s

01

10 11

70 71 77

17

07

TISO0810-93/d017

Top

Left Right

Bottom

Figure 2: Partition and orientation of 8x8 blocks

FDCT and IDCT are defined as follows:

FDCT :

Svu =
1

4
CuCv

7∑
x=0

7∑
y=0

syxcos
(2x+ 1)uπ

16
cos

(2y + 1) vπ

16

IDCT :

syx =
1

4

7∑
x=0

7∑
y=0

CuCvSvucos
(2x+ 1)uπ

16
cos

(2y + 1) vπ

16

where ,
Cu, Cv = 1√

2
for u, v = 0

Cu, Cv = 1 otherwise.
FDCT function in MATLAB conforms to the above definition.

Prior to FDCT operation, each 8x8 block samples shall be level shifted to a signed
representation by subtracting 128. That is, the image sample values [0, . . . 255] are converted
to the values [−128, . . . 127] in 2’s complement form.
A numerical analysis of the 8x8 FDCT shows that, the nonfractional part of the DCT
coefficients can grow by at most 8 times(3 bits) of N, if the 64-points contains N bit integer.
So, the sample values [−128, . . . 127] may grow to [−1024, . . . 1023] 11 bit 2’s complement

Purdue University: Digital Image Processing Laboratories 3

values.

2.2 Quantization

After the 8x8 FDCT, each of the 64 resulting DCT coefficients is quantized by a uniform
quantizer. The quantizer step size is defined as a table of 8x8 block for each 8x8 DCT
coefficients. Loss of image information is caused by this quantization with different step
size operation. It means that we compress the image with some distortion. The uniform
quantizer operates as following equation:

Sqvu = round

(
Svu

Qvu

)
(1)

where,
Svu = input sample (v,u) in 8x8 block
Qvu = quant step size at location(v,u) in 8x8 quant table
Sqvu = quantized DCT coefficient, rounded after normalizing by Qvu.

Through the average statistics of a large set of video image with 8 bit precision, some
typical quatization tables which may prove to be useful for many application, are developed.
Also you can use any quantization table of your own, as long as you specify it in the JPEG
file parameter field. The quantized DCT coefficient values for 8 bit image are signed integer
with 11 bit precision. The reason is 3 bit increase in precision due to FDCT process. One
of typical quantization table for luminance component is shown in Figure 3.

16 11 10 16 124 140 151 161

12 12 14 19 126 158 160 155

14 13 16 24 140 157 169 156

14 17 22 29 151 187 180 162

18 22 37 56 168 109 103 177

24 35 55 64 181 104 113 192

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 199

Figure 3: Typical luminance uniform quantizer table

Now we will experiment the DCT and quantization.

1. Load the gray image img03y.tif from the lab home page. The image size is an integer
multiple of 8x8 block.

2. Convert it to double type matrix. Then subtract 128 from all the element of the array.

Purdue University: Digital Image Processing Laboratories 4

3. Execute jpgqz.m M-script file. You will get Quant and Zig 8x8 matrix.

4. Perform 8x8 block FDCT and Quantization using MATLAB’s builtin functions dct2
and blkproc.
Note: Use the command
f= blkproc(img,[8,8],’round(dct2(x,[8,8])./P1)’,Quant);
where Quant is the parameter into P1 in the inline function ’round(dct2(x,[8,8])./P1)’.

5. Do the inverse operation in the order of dequantization, IDCT, level restoration, to get
restored image.
Note: As before, use blkproc and idct2 command.

6. Get the difference image obtained by subtracting restored image from source image.
The difference image may contain negative values. So you should shift the difference
values by adding 128 to make them positive.

Section 2.2 Report:
Hand in the hard copy of the difference image.

2.3 DC coding and Zig-zag scan

Among 64 DCT coefficients, the DC coefficient is treated separately from the other 63
AC coefficients. It corresponds to the local 8x8 block average. Since the DC coefficient has
the highest energy, a fine step quantization leads to a large information bits. Too much
loss of information will distort the image with blocking effects, and therefore a proper fine
quantization step is necessary. Also, there is still high correlation among the DC coefficients
of each block, so that it is differentially encoded. What should be coded for DC coefficients,
is the difference in the quantized DC coefficient between the current block and the previous
block of the same component(in our case, luminance):

DIFF = Sq00 − PRED (2)

PRED value is initially set to zero. The DIFF value is encoded as Variable-Length Integer.

The remaining 63 AC coefficients have high probability to be zero after quantization, since
higher frequency coefficients have lower energy. It is highly probable for a high frequency
AC coefficient to be zero, given that its predecessors are zeros. Therefore there will be runs
of zeros in the AC coefficients. To exploit the advantage of runs of zeros further, so-called
zig-zag scanning is used. Through the scan, we can group longer runs of zeros. The zig-zag
scan sequence is shown in Figure 4.

2.4 VLC(Huffman) and VLI coding

DC and AC DCT coefficients in a 8x8 block, are coded differently. The DC difference
values are structured as 2 symbols before encoding;

Purdue University: Digital Image Processing Laboratories 5

TISO0690-93/d005

DC

DC DC

Block Block

AC AC

AC AC

i - 1i

01 07

70 77

i - 1 i

i - 1 i

DIFF = DC - DC

Differential DC encoding Zig-zag order

Figure 4: Zig-zag sequence of quantized DCT coefficients

symbol-1 symbol-2
(BIT SIZE) (DIFF value)

Symbol-1 is encoded as one of Huffman (Variable Length) code words defined in the DC code
table, which designates the bit size of the symbol-2. Then symbol-2(DIFF) is appended to
LSB of the code word, most significant bit first. Let’s say m bits are designated for DIFF
by symbol-1. When DIFF is positive, low order m bits of DIFF is appended. When DIFF is
negative, low order m bits of DIFF − 1 is appended. For example, if DIFF value is ’−3’,
then it belongs to the set {−3,−2, 2, 3} and m is 2. According to above scheme, each DIFF
value whose m = 2 is coded as each of {00, 01, 10, 11} 2 bit code. So, the DIFF value ’−3’
is encoded as ’01100’. Symbol-2 coding scheme is called ’Variable Length Integer’. Table 1
shows the DIFF magnitude category and the Symbol-1 Huffman code word.

DIFF values m Code word for m

0 0 00
−1, 1 1 010

−3,−2, 2, 3 2 011
−7 . . . − 4, 4 . . . 7 3 100
−15 . . . − 8, 8 . . . 15 4 101
−31 . . . − 16, 16 . . . 31 5 110
−63 . . . − 32, 32 . . . 63 6 1110
−127 . . . − 64, 64 . . . 127 7 11110
−255 . . . − 128, 128 . . . 255 8 111110
−511 . . . − 256, 256 . . . 511 9 1111110
−1023 . . . − 512, 512 . . . 1023 10 11111110
−2047 . . . − 1024, 1024 . . . 2047 11 111111110

Table 1: Luminance DC coefficient DIFF value and code word

Before encoding, the AC coefficient values are represented by a pair of symbols:

Purdue University: Digital Image Processing Laboratories 6

symbol-1 symbol-2
(RUN LENGTH, BIT SIZE) (AC MAGNITUDE)

Symbol-1 represents 2 pieces of information. RUN LENGTH is the number of consecu-
tive zero-valued AC coefficients preceding the nonzero AC coefficient in the zig-zag scaned
sequence. BIT SIZE is the number of bits used to encode the VLI representing AC MAG-
NITUDE of the nonzero AC coefficient. The relationship between BIT SIZE and AC MAG-
NITUDE is the same as in the DC VLI’s case. Table 2 shows the relationship.

Bit Size AC coefficient value range

0 0
1 −1, 1
2 −3,−2, 2, 3
3 −7 . . . − 4, 4 . . . 7
4 −15 . . . − 8, 8 . . . 15
5 −31 . . . − 16, 16 . . . 31
6 −63 . . . − 32, 32 . . . 63
7 −127 . . . − 64, 64 . . . 127
8 −255 . . . − 128, 128 . . . 255
9 −511 . . . − 256, 256 . . . 511
10 −1023 . . . − 512, 512 . . . 1023

Table 2: AC coefficient magnitude category for bit size

However, BIT SIZE information, once combined with RUN LENGTH information, is
mapped to different Huffman code from DC Huffman code. RUN LENGTH field can have
values 0 to 15. Actual zero-runs in the zig-zag scanned sequence can be greater that 15, so
symbol-1 pair (15,0) meaning ZRL is interpreted as the extension symbol with 16 zero-runs.
There can be up to 3 consequtive (15,0) extension and 1 terminating symbol-1. If the only
nonzero AC coefficient occurs, for example, at the 51th position in the zig-zag scan, then it
is expressed as symbol-1 pair string: ’(15,0), (15,0), (15,0),(2,x)’ where x is one of [1, . . . A]
representing BIT SIZE information. Also, in that case, the last run of zeros starting from the
52th position, includes the 63th AC coefficient. This special zero-run is denoted as symbol-1
pair (0,0) meaning EOB(End of Block), and can be interpreted as an ’escape’ symbol saying
no more non-zero value in the 8x8 zig-zag scaned sequence. Actual Huffman code assignment
for the symbol-1 pair(i,j) is shown at the Appendix B.

Zero run Bit Size of AC magnitude
0 1 2 . . . 9 A

0 EOB
. N/A
. N/A Composite values
. N/A
F ZRL

Figure 5: Two dimensional value array for AC Huffman coding

Purdue University: Digital Image Processing Laboratories 7

1. Repeat the exersize upto step 4 in Section 2.2 .

2. Extract two quantized 8x8 block corresponding to the image location (1,1) and (1,9).
Then, convert each 8x8 block into two 1x64 matrix named A,B according to the zig-zag
scan order using Zig.
Note: All matix or array index conform to MATLAB convention.

3. Assume DC pred = 0. By referncing section 2.4, write down the corresponding BIT
SIZE code and VLI value for the DC prediction at A matrix.

4. For AC coefficients, until you find the nonzero AC coefficient, count the consequtive
zeros and determine the magnitude BIT SIZE of the coefficient. Form (’count’,’range’)
pair and convert the pair to VLC code as shown in Table at Appendix B. Write down
the code value and concatenate it to the above DC codes. Then, write down the VLI
value for the AC coefficient. Continue the AC encoding to the end of A matrix.

5. Also, encode B matrix for DC and AC coefficients and concatenate the result
to previous one.

6. Convert the whole bitwise code for A,B matrix into byte unit. If you get a byte value
’0xFF’, then insert byte value ’0’ next to 0xFF. This procedure is called byte stuffing,
to prevent ’0xFF’ from being accidentally taken as a part of markers in Appendix A.

Section 2.4 Report:
Hand in the coded byte string for A, B matrix.

3 Baseline JPEG Compressed data format

To insure proper representaion of the compressed data, it shall maintain an ordered format
which consists of parameters, markers, entropy-coded data. All of them are represented as
byte-aligned value and for each byte, MSB comes first and LSB comes last. (ref: [1] Annex
B) Figure 6 shows the order of the high-level consistuent parts for DCT-based encoding
process. Among them, only necessary parts for achromatic baseline JPEG encoding will be
briefed in the Appendix A.

1. Build your own MATLAB routine performing DC and AC coding. Make it work on
1x64 zig-zag scanned array. All the Huffman tables are given in the huff.m M-script
fie. The routine may output code values as string or byte value. Note: You can use
find MATLAB command to count zero-run for AC coefficients.

2. Compare the routine’s output for A, B matrix mentioned at the exercise of Section 2.4
to your previously written-down code value by hand.

Purdue University: Digital Image Processing Laboratories 8

3. With the provided JPEG header management M-function files put header.m and put tail.m,
extend your routine to work as baseline JPEG encoder. It is easier to have your routine
only work on achromatic image whose screen size is multiple of 8 in both horizontal and
vertical direction. The arguments and return value of the subfunctions are as follows:

function fid = put header(v,h,qtable,fid) ;
function fid = put tail(fid) ;

• v – vertical dimension of source image in pixel unit

• h – horizontal dimension of source image

• qtable – 8x8 quantization matrix used in encoding process

• fid – output file pointer designated by user.

4. Output the img03y.tiff into img03y.jpg, as a result of your JPEG encoder routine.
Check the validity of output using xv program.

5. Double the ’Quant’ matrix value and run your baseline JPEG encoder routine. Then
Output the img03y.tiff into img03yq2.jpg. Compare the quality and size of img03yq2.jpg
to those of img03y.jpg.

Section 3 Report:

1. Hand in your JPEG encoder source code.

2. Hand in hard copy of img03y.jpg and img03yq2.jpg.

References

[1] ISO/IEC 10918-1,1993(E)

[2] G.K.Wallace. The JPEG still picture compression standared. Communications of the
ACM, Vol. 34, No.4:30-44,April 1991.

Purdue University: Digital Image Processing Laboratories 9

A Basic JPEG Header Formats

TISO0840-93/d020

Compressed image data

SOI Frame EOI

Tables/
misc. [[Frame header DNL

segment Scan2

[[[[Scan 1

[[Scan last

Tables/
misc.[[

Scan header [ECS0

Scan

Frame

ECS last-1 ECS lastRST last-1]

Entropy-coded segment 0 Entropy-coded segment last

<MCU >, <MCU >, · · · <MCU >1 2 Ri <MCU >, <MCU >, · · · <MCU >n n + 1 last

RST0

Figure 6: Syntax for sequential DCT-based operation

A.1 Frame

Frame is located between SOI(0xFFD8) and EOI(0xFFD9) mark. It contains some tables
and headers and scan segments. In baseline encoder, we will use only one scan segment and
one luminance quantization table and two Huffman table for each of DC and AC encoding
as in sec A.2.
The header specifies the source image characteristics, and encoded components specific pa-
rameters. Baseline DCT JPEG is designated by frame start marker SOF0(0xFFC0).

Lf: (16 bit) Frame header length in bytes.

P: (8 bit) Bits/Sample precision.

Y: (16 bit) Number of lines in the source image.

X: (16 bit) Number of samples in one line.

Nf: (8 bit) Number of image component in the frame.

C1: (8 bit) Component identifier label.

H1: (4 bit) Horizontal sampling factor.

Purdue University: Digital Image Processing Laboratories 10

V1: (4 bit) Vertical sampling factor.

Tq1: (8 bit) Quantization table destination selector.

For example, with 512x768 luminance only source image, the frame header content looks like
following in hexadecimal numbers:

FF C0 0B 08 03 00 02 00 01 11 00

C1 1 1 1 C C

SOF PLf Y X Nf

H V Tq 2 2 V2H Tq 2 Nf Nf Nf NfH V Tq

n

TISO0850-93/d021

Frame header

Frame component-specification parameters

Component-specification
parameters

Figure 7: Frame Header syntax

A.2 Quantization and Huffman code Tables

Q
1

Q Q
0 63

Lq Pq Tq

TISO0880-93/d024

DQT

Define quantization table segment

Multiple (t = 1, ..., n)

Figure 8: Quantization table syntax

1 Quantization table and 2 Huffman code tables are inserted between SOI(start of image)
and SOF0(start of frame). Each parameter in the DQT(Define Quantization table:0xFFDB)
is defined below.

Lq: (16 bit) Quantization table length.

Pq: (4 bit) Table element Qk’s precision. ′0′ = 8 bit, ′1′ = 16 bit.

Tq: (4 bit) Quantization table destination identifier.

Qk: (8 bit) Quantization table element in zig-zag scan order.

We will use a typical quantization table in Figure 3 for the luminance component. For base-
line DCT JPEG, the quantizer table is denoted as follows:

Purdue University: Digital Image Processing Laboratories 11

FF DB 00 43 00

10 0B 0C 0E 0C 0A 10 0E 0D 0E 12 11 10 13 18 28

1A 18 16 16 18 31 23 25 1D 28 3A 33 3D 3C 39 33

38 37 40 48 5C 4E 40 44 57 45 37 38 50 6D 51 57

5F 62 67 68 67 3E 4D 71 79 70 64 78 5C 65 67 63

TISO0890-93/d025

DHT Lh Tc Th L 1 L 2 L 16

Define Huffman table segment

Symbol-length
assignment

Multiple (t = 1, ..., n)

Symbol-length assignment parameters

V1,1 V1,2 V1,L1
V2,1 V2,2 V2,L2

V16,1 V16,2 V16,L16

Figure 9: Huffman table syntax

The Huffman tables are located before SOF0 marker. Its syntax is shown in Figure 9.
Like Qantization table definition, it starts with DHT(Define Huffman Table:0xFFC4) marker.
Following parameters are defined:

Lh: (16 bit) Huffman table definition length

Tc: (4 bit) Table class, 0 = DC table, 1 = AC table

Th: (4 bit) Huffman table destination identifier

Li: (8 bit) Number of Huffman codes of length i. (1 ≤ i ≤ 16)

Vi,j: (8bit) Value associated with each Huffman code.

Table 1 content is converted into DHT segment for DC. DC Huffman table definition exam-
ple for a typical Huffman code is shown below

FF C4 00 1F 00

00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00

00 01 02 03 04 05 06 07 08 09 0A 0B

First row shows DHT to Th field. Second row represents L1 . . . L16. Since L3 value is 05, it
is interpreted as that there are 5 codes of length 3 bit in the DC Huffman code table, and
they are {01 02 03 04 05} in the third row. They corresponds to Table 1. For AC Huffman
table definition example, refer citeitu-t81 Annex K.3.3.2. Only difference is that they needs
162 Vi,j entries. It represents the Figure 5’s content.

Purdue University: Digital Image Processing Laboratories 12

2 2 2

NsTd NsTa

NsCs

SOS Ls Ns Ss Se Ah Al

Cs1 Td1 Ta1 Cs Td Ta

TISO0860-93/d022

Scan header

Component-specification
parameters

Scan component-specification parameters

Figure 10: Scan Header Syntax

A.3 Scan Segment

This segment is the last parameter segment before the actual encoded data appear. It speci-
fies which component was coded and which Huffman tables were used. Following parameters
are to be defined.

Ls: (16 bit) Scan header length.

Ns: (8 bit) Number of image components in this scan segment.

Csj: (8 bit) scan component selector.

Tdj: (4 bit) DC Huffman table destination selector.

Taj: (4 bit) AC Huffman table destination selector.

Ss: (8 bit) Start of spectral selection. Specify the first DCT coefficient in zig-zag order,to
be coded.

Se: (8 bit) End of spectral selection. Sepcify the last DCT coefficient in zig-zag order, to
be coded.

Ah: (4 bit) Set to zero in Sequential DCT.

Al: (4 bit) Set to zero in Sequential DCT.

For achromatic the baseline DCT JPEG, scan header values and the encoded data stream
upto EOI marker example is shown below. ’zz ww yy . . . ’ represents the Huffman code for
first 8x8 DCT block’s coefficients.

FF DA 00 08 % Start of Scan marker

01 01 00 00 3f 00

zz ww yy . . . % encoded data stream

. . .

. . .

FF D9 % EOI marker

Purdue University: Digital Image Processing Laboratories 13

B Typical AC Huffman Table

Run/Size Code length Code word

0/0 (EOB) 4 1010
0/1 2 00
0/2 2 01
0/3 3 100
0/4 4 1011
0/5 5 11010
0/6 7 1111000
0/7 8 11111000
0/8 10 1111110110
0/9 16 1111111110000010
0/A 16 1111111110000011

1/1 4 1100
1/2 5 11011
1/3 7 1111001
1/4 9 111110110
1/5 11 11111110110
1/6 16 1111111110000100
1/7 16 1111111110000101
1/8 16 1111111110000110
1/9 16 1111111110000111
1/A 16 1111111110001000

2/1 5 11100
2/2 8 11111001
2/3 10 1111110111
2/4 12 111111110100
2/5 16 1111111110001001
2/6 16 1111111110001010
2/7 16 1111111110001011
2/8 16 1111111110001100
2/9 16 1111111110001101
2/A 16 1111111110001110

3/1 6 111010
3/2 9 111110111
3/3 12 111111110101
3/4 16 1111111110001111
3/5 16 1111111110010000
3/6 16 1111111110010001
3/7 16 1111111110010010
3/8 16 1111111110010011
3/9 16 1111111110010100
3/A 16 1111111110010101

Table 3: Typical Huffman table for AC coefficients(sheet 1 of 4)

Purdue University: Digital Image Processing Laboratories 14

Run/Size Code length Code word

4/1 6 111011
4/2 10 1111111000
4/3 16 1111111110010110
4/4 16 1111111110010111
4/5 16 1111111110011000
4/6 16 1111111110011001
4/7 16 1111111110011010
4/8 16 1111111110011011
4/9 16 1111111110011100
4/A 16 1111111110011101

5/1 7 1111010
5/2 11 11111110111
5/3 16 1111111110011110
5/4 16 1111111110011111
5/5 16 1111111110100000
5/6 16 1111111110100001
5/7 16 1111111110100010
5/8 16 1111111110100011
5/9 16 1111111110100100
5/A 16 1111111110100101

6/1 7 1111011
6/2 12 111111110110
6/3 16 1111111110100110
6/4 16 1111111110100111
6/5 16 1111111110101000
6/6 16 1111111110101001
6/7 16 1111111110101010
6/8 16 1111111110101011
6/9 16 1111111110101100
6/A 16 1111111110101101

7/1 8 11111010
7/2 12 111111110111
7/3 16 1111111110101110
7/4 16 1111111110101111
7/5 16 1111111110110000
7/6 16 1111111110110001
7/7 16 1111111110110010
7/8 16 1111111110110011
7/9 16 1111111110110100
7/A 16 1111111110110101

Table 4: Typical Huffman table for AC coefficients(sheet 2 of 4)

Purdue University: Digital Image Processing Laboratories 15

Run/Size Code length Code word

8/1 9 111111000
8/2 15 111111111000000
8/3 16 1111111110110110
8/4 16 1111111110110111
8/5 16 1111111110111000
8/6 16 1111111110111001
8/7 16 1111111110111010
8/8 16 1111111110111011
8/9 16 1111111110111100
8/A 16 1111111110111101

9/1 9 111111001
9/2 16 1111111110111110
9/3 16 1111111110111111
9/4 16 1111111111000000
9/5 16 1111111111000001
9/6 16 1111111111000010
9/7 16 1111111111000011
9/8 16 1111111111000100
9/9 16 1111111111000101
9/A 16 1111111111000110

A/1 9 111111010
A/2 16 1111111111000111
A/3 16 1111111111001000
A/4 16 1111111111001001
A/5 16 1111111111001010
A/6 16 1111111111001011
A/7 16 1111111111001100
A/8 16 1111111111001101
A/9 16 1111111111001110
A/A 16 1111111111001111

B/1 10 1111111001
B/2 16 1111111111010000
B/3 16 1111111111010001
B/4 16 1111111111010010
B/5 16 1111111111010011
B/6 16 1111111111010100
B/7 16 1111111111010101
B/8 16 1111111111010110
B/9 16 1111111111010111
B/A 16 1111111111011000

Table 5: Typical Huffman table for AC coefficients(sheet 3 of 4)

Purdue University: Digital Image Processing Laboratories 16

Run/Size Code length Code word

C/1 10 1111111010
C/2 16 1111111111011001
C/3 16 1111111111011010
C/4 16 1111111111011011
C/5 16 1111111111011100
C/6 16 1111111111011101
C/7 16 1111111111011110
C/8 10 1111111111011111
C/9 16 1111111111100000
C/A 16 1111111111100001

D/1 11 11111111000
D/2 16 1111111111100010
D/3 16 1111111111100011
D/4 16 1111111111100100
D/5 16 1111111111100101
D/6 16 1111111111100110
D/7 16 1111111111100111
D/8 16 1111111111101000
D/9 16 1111111111101001
D/A 16 1111111111101010

E/1 16 1111111111101011
E/2 16 1111111111101100
E/3 16 1111111111101101
E/4 16 1111111111101110
E/5 16 1111111111101111
E/6 16 1111111111110000
E/7 16 1111111111110001
E/8 16 1111111111110010
E/9 16 1111111111110011
E/A 16 1111111111110100

F/0 (ZRL) 11 11111111001
F/1 16 1111111111110101
F/2 16 1111111111110110
F/3 16 1111111111110111
F/4 16 1111111111111000
F/5 16 1111111111111001
F/6 16 1111111111111010
F/7 16 1111111111111011
F/8 16 1111111111111100
F/9 16 1111111111111101
F/A 16 1111111111111110

Table 6: Typical Huffman table for AC coefficients(sheet 4 of 4)

