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 AN INVERSION FORMULA FOR CONE-BEAM RECONSTRUCTION*

 HEANG K. TUYt

 Abstract. An analytic inversion formula allowing the reconstruction of a three-dimensional object

 from x-ray cone-beams is given. The formula is valid for the case where the source of the beams describes

 a bounded curve satisfying a set of weak conditions.

 1. Introduction and notation. Reconstructing the density function of a three-

 dimensional object via x-ray projection data can be formulated mathematically as

 recovering the density function from its line integrals [7]. The reduction of the
 dimension of the problem from three to two can be done by considering three-
 dimensional objects as a stack of their cross-sections. This reduction allows the use

 of Radon's inversion formulas [15] which express a function defined on a plane in
 terms of its line integrals. Various numerical algorithms derived from the Radon

 inversion formulas or their equivalents are available for reconstructing single cross-
 sections of objects, see, e.g., [3], [5], [8], [9], [13], [16], [19].

 This reduction of the dimension of the problem is not always possible for clinical
 and/or engineering reasons. For example, a device which collects data for a single
 cross-section at a time is not appropriate for the study of moving organs such as the

 beating heart. This is one of many motivations which led to the design of CT scanners
 using cone beams (the beam has the shape of a three-dimensional cone), e.g., the
 dynamic spatial reconstructor (DSR) [21] and the cardiovascular CT (CVCT)
 scanner [2].

 There is no known closed-form inversion formula allowing the reconstruction of

 a three-dimensional object from cone-beam x-ray projection data with the vertex of

 the cone (e.g., x-ray source) describing a bounded curve. The formulas given by
 Gel'fand [4] and Kirillov [10] assume the vertex describes an unbounded curve. Other
 works related to this area can be found in [1], [6], [11], [12], [17], [20].

 In this article we give an inversion formula for the reconstruction of a three-
 dimensional object from x-ray cone-beam where the vertex describes a bounded curve

 satisfying a set of weak conditions.

 We shall assume that the density function f is a real integrable function on R3
 whose support is contained in a compact set Q. The inner product of two vectors

 a, f E R3 will be denoted by (a, ,3). The integral of a function over a domain D in R3
 is denoted by ID. The Fourier transform f of a function f: R3 -* R is defined by

 (1) t (, = Jf f (x) e dx.

 Then f is the inverse Fourier transform of f, i.e.,

 (2) f(x) = Jf(e) e de.

 * Received by the editors June 2, 1981, and in revised form March 1, 1982. This work was supported
 by the National Institute of Health under grants HL04664, HL18968 and RR01372.

 t Medical Image Processing Group, Department of Computer Science, State University of New York
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 546

This content downloaded from 
����������195.252.220.112 on Tue, 08 Aug 2023 12:39:57 +00:00����������� 

All use subject to https://about.jstor.org/terms



 INVERSION FORMULA FOR CONE-BEAM RECONSTRUCTION 547

 Using spherical coordinates, relation (2) gives

 21ff Xf/2 00

 (3) f(x) = j J cos q j p2f(p3) e2i P(,X dp dq dO,
 0 -f/2 0

 where (3 = (cos 0 cos q, sin 0 cos 0, sin q$).
 A curve in R3 is a continuous function 1: A -* R3, where A is an interval of the

 real line R. The unit sphere in R3 centered at the origin will be denoted by S.

 Our inversion formula is valid if the vertex of the cone-beam describes a curve

 4' satisfying the following conditions:

 i) The curve is outside of the region fl.
 ii) The curve is bounded, continuous and almost everywhere differentiable.
 iii) For all (x, j3) in fQxS, there exists A in A, such that (x, j3)=(F(A), j3) and

 (V(A), j3) # 0.
 The third condition of the curve means that, for any direction (3, the plane

 orthogonal to (3 passing through a point x E fl must cut the curve at a point F(A) for

 which (V(A), ,l)# 0. For any bounded object, a curve consisting of two circles such
 as that in Fig. 1 or some type of spiral curve will satisfy all the conditions on the curve
 required in the theorem.

 3 3D Obj eCt

 FIG. 1

 Let x0 E R3 and (3 Ee S. The integral of f along the line of direction (3 and passing
 through x0 can be written as roo f(xo +t4) dt. Since we assume that f has a support
 contained in fl and the curve 4' is outside of fl, it follows that the above line integral
 is not zero only along the half-lines or rays leaving F(A) in a cone of vertex 4'(A). In
 that case we have

 00 00

 (4) fN((A) + t() dt = f((A) + t() dt.

 DEFINITIONS. a) For a E R3, A E A, we define
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 548 HEANG K. TUY

 From the relation a = la I,3, where (8=a/la 1, and the relation (4), it follows
 immediately that g(a, A) is the product of Ia 1-' with the integral of f along the line
 of direction a/Ia I and passing through the point F(A). In medical imaging environment,
 ?4(A) corresponds, for example, to a position of x-ray source and g(a, A) can be

 obtained from the projection data along the ray leaving the point 'F(A) in the direction

 a/lal.
 b) For e E R3and A E A, we define

 (6) G(e, A) = J g(a, A) e-2iw(c") da.

 c) For each A E A, we define y R3 x (O, oo) - R3 x (O, o) by

 (7) yx (a, t) = (P(A) + ta, -).

 Note that yA is bijective.

 2. The inversion formula. We give only a formal derivation of the inversion
 formula in this section. A rigorous proof is given in the Appendix.

 LEMMA. For e E R3 and A E A, we have

 (8) G(e, A) = $ pf(pe) ep( dp.
 0

 Proof. From the definitions (5) and (6) we obtain

 G(e, A) = f J f(F(A) + ta) e -2iir(c'0 dt da.

 Making a change of variables defined by -y given in (7) and realizing that the Jacobian
 of the transformation yA is equal to -p, we conclude that

 G(e, A) J pf(x) e-2irP(x D(kCdp dx

 = I p e2i"'rp<( JD1)3e f(x) e2ir(`~P dx dp.

 Hence (8) is proved.
 THEOREM. Let f be a real integrable function defined on R with support contained

 in a compact subset fl. If F satisfies the curve conditions given in ? 1, then for x E Q,

 (9) f(x)=I Cosq d __de, (g) =J r x2 2ir(('(A), (3) aA

 where (3 = (cos 0 cos X, sin 0 cos X, sin X) and A is such that (/3, x) = ((3, 1'(A)) and

 (jG, D' (A )) -?6 o
 Proof. From the lemma, we obtain

 (10) a- (a, A) = 2 ir('(A), e) p2f(pe) e2irp(1.),4) dp (10) ~~aA J0e~((X~ p

This content downloaded from 
����������195.252.220.112 on Tue, 08 Aug 2023 12:39:57 +00:00����������� 

All use subject to https://about.jstor.org/terms



 INVERSION FORMULA FOR CONE-BEAM RECONSTRUCTION 549

 The third condition on the curve allows us to conclude that for each fixed x and

 (3= (cos 0 cos X, sin 0 cos X, sin 0), there exists A in A, for which

 00 A ~ ~ ~ 1 aG
 1 p f(p/3) e P(xsdp = *-(f3 A).

 Taking (3) into account, we conclude the relation (9).

 Remarks. 1) For the curve and object like in Fig. 2, the third condition is not
 satisfied for every point of the object. However, it is met for every point in a region

 3-D Object

 curve X

 FIG. 2

 containing f1i. According to the relation (9), the density function can be estimated in
 that region, provided that for each point of the curve, all the integrals of the function
 along the lines through the point are known in a cone containing the whole object.

 2) The conditions on the curve seem to be natural from the following point of
 view: to get a good feeling about the shape of a three-dimensional object, usually we
 rotate the object about two perpendicular axes.

 3) An inversion formula of the form (9) in the case where the function f is defined
 on R' (n _ 2), can be established using the arguments similar to those given above.

 Appendix. There exist functions f for which G(6, A), see (8), and its derivative,
 see (10), do not exist as functions. The arguments given in the proof of the lemma
 were purely formal. The change of variables and the change of the order of integrations
 were applied even though the integrands were not necessarily absolutely integrable.

 In order to give a rigorous proof, we consider G(6, A) and its derivative to be
 tempered distributions, i.e., continuous linear forms defined on the space Y'(R3) of
 rapidly decreasing C-functions [14]. The value of a distribution T at a test function

 qf e Y'(R3) is denoted by (T, qf). We recall that slowly increasing locally integrable
 functions can be considered as tempered distributions [14, p. 110], and if two functions
 define two equal distributions, then they are equal almost everywhere as functions
 [18, p. 80].

 From (6) we see that G is the Fourier transform of g with respect to the variable
 a. The function g is slowly increasing; consequently it defines a tempered distribution.
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 550 HEANG K. TUY

 Moreover its Fourier transform with respect to a is defined as

 (1 1) (G (e, A) t#()(g (a, A), 0 (a))=1 g(a, Ak)O(a) da,

 for all f E Y(R3), see [14, p. 118].
 For k = 1, 2, we define

 00

 as

 ,^m

 lim p pkf(pe) e 2lP(() >dp

 in the distribution sense, i.e., for each f E Y(R3),

 (12) pkf(pe() e2ivP(c(A).O dp, pkr(o)) l (| p ) e dp, 4f(())

 Here (h (e ), af (a)) is JR3 h (e)&fr (e) de whenever h is a function. The following proposition
 and its proof justify the above definitions.

 PROPOSITION 1. For if e Y(R 3) and A e A,

 (13) (| (pe) e2irp(D(A),C) dp, (e))= j p f(x)4(p(x -4(A))) dx dp

 and

 00 00

 (14) a J0 f (pe) r dp =e2ir((V(A), e) j p2f(p4) e dp.

 Proof. We know that f is rapidly decreasing [14, p. 116]. Since there exists a > 0
 such that Ix - F(A )I > a for all x E Ql and A E A, it follows that

 (15) j J p(x)f(p(x-l4(A)))ldxdpCJ if(x)Idxj (l+a2P2)ndpi

 for some constant n ?-2 and C > 0. By the Lebesgue dominated convergence theorem
 and the Fubini theorem, we conclude

 j p (x)I (p (x - .I(A))) dx dp = lim | J f(x)f (p (x - 4(A))) dx dp.

 Moreover we have,

 | p f(x)O (p (x - P(A))) dx dp

 = Pf ff(x) f r(4)e 2i ( dedx dp

 = JR| + jm pf (P) e 2 dp d4.

 Taking definition (12) into account, we obtain the relation (13).
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 INVERSION FORMULA FOR CONE-BEAM RECONSTRUCTION 551

 The relation (15) allows us to write

 aA JoP J f (x)f (p (x - (A))) dx dp

 - p f f(x) - if(p(x -4(A))) dx dp
 J0 JAI aA

 J m r r
 lim p f f(x)I 2()2in-(VD(A), g) e-2i,p('-'d(A)>de dp
 m-*D ? Q~ JR3

 -lim r2 JR ij(?(A),6) p2f(p6) e2P(d(A) pd de. ma R- 03 0
 Using the definition (12) and the relation (13) we can conclude (14).

 PROPOSITION 2. As tempered distributions, we have

 (16) G(6, A) = j pf(p ) e2 rP( (A) dp.
 0

 Proof. From the definitions (11) of G and (5) of g, we obtain

 (G (e, A), qf(6)) f f(((A) +tax)qf(a) dt da.

 The integrand f (?(A) + ta )qf(a) is absolutely integrable since f is rapidly decreasing
 and g as defined in (5), is slowly increasing as a function of a. After making a change

 of variables defined by yx, we have

 (G(6, A), f (6)) = j J pf(x)o(p(x -4(A))) dx dp.

 The conclusion follows from the relation (13).

 Acknowledgments. The author thanks Professors G. T. Herman and Z. Zielezny

 for reading the handwritten version and giving valuable suggestions, Mr. Bruce Smith
 and Dr. Arnold Lent for introducing the reference [10] to the author and Ms. Beverly
 Peters for typing the manuscript and preparing the drawings.
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