Notes on Fourier Optics

•How does light propagate through free space?

•What do lenses do?

•How does a directional antenna work?

•Four important ideas:

- Wave equation
- Optical plane wave and direction of transmission/arrival
- Fresnel approximation: Assumes light is traveling through an aperture
- Fraunhofer approximation: Assumes light is far from the aperture

Electro-Magnetic Waves

Plane linearly polarized wave

EM waves are vector fields

- *E* and *B* are traveling vector fields
- E is perpendicular to B
- $\vec{p} = E \times B$ where \vec{p} is the direction of travel

The Wave Equation

•From Maxwell's equations:

– We can show that

$$\nabla^2 \vec{E} - \mu \varepsilon \frac{\partial^2 E}{\partial t^2} = 0$$
 This is the wave equation in 3 dimensions.

- For simplicity, we consider a single component of the electric field vector: $\nabla^2 E - \mu \varepsilon \frac{\partial^2 E}{\partial t^2} = 0$

 $\sim \rightarrow$

- where μ is the permittivity; and ϵ is the dielectric constant; and $c = \frac{1}{\sqrt{\mu\epsilon}}$ where *c* is the speed of light in the medium.

Solution to the Wave Equation in Time

•The wave equation is given by

$$7^2 E - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = 0$$

Separation of variables gives solutions of the form

$$E_t(x, y, z, t) = E_o \exp[j2\pi(v_x x + v_y y + v_z z)] \exp[-j2\pi f_o t]$$
$$= E_o \exp[j2\pi(v_x x + v_y y + v_z z - f_o t)]$$

– where

$$\sqrt{v_x^2 + v_y^2 + v_z^2} = v_o = \frac{1}{\lambda} = \frac{f_o}{c}$$
Wavelength (m) $\rightarrow \lambda = \frac{1}{v_o} = \frac{c}{f_o}$
Velocity (m/sec)
spatial frequency (m⁻¹)
We will assume that f_o , v_o , and c are all fixed.

Plane Waves

Plane waves have the form

$$E_t(x, y, z, t) = E_o \exp[j2\pi(v_x x + v_y y + v_z z)] \exp[-j2\pi f_o t]$$
$$= E_o \exp[j2\pi(v_o(\vec{p} \cdot \vec{r}) - f_o t)]$$

- where
$$\vec{r} = [x, y, z], \ \vec{v} = [v_x, v_y, v_z], \ v_o = \|\vec{v}\| \text{ and } \vec{p} = \frac{\vec{v}}{\|\vec{v}\|}.$$

Reproduced from https://www.acs.psu.edu/drussell/demos/evanescentwaves/evanescentwaves.html

Plane Wave Interpretation

Solution has the form:

$$E_t(x, y, z, t) = E_o \exp[j2\pi(v_x x + v_y y + v_z z)] \exp[-j2\pi f_o t]$$

•Electric field is the real component:
Electric Field = Re{E_t(x, y, z, t)}

•So, we can always recover the space-time solution from: $E(x, y, z) = E_o \exp[j2\pi(v_x x + v_y y + v_z z)]$

– where

$$\sqrt{v_x^2 + v_y^2 + v_z^2} = v_o = \frac{1}{\lambda}$$

1D Plane Wave Interpretation

•Solution has the form:

$$E_t(x,t) = E_o \exp[j2\pi(v_o x)] \exp[-j2\pi f_o t]$$

= $E_o \exp\left[j2\pi v_o \left(x - \frac{v_o}{f_o}t\right)\right]$
Velocity (m/sec)

• Then the electric field is given by Electric Field = $\text{Re}\{E_t(x, y, z, t)\}$

$$= \operatorname{Re}\left\{E_{o}\exp\left[j2\pi\nu_{o}\left(x - \frac{\nu_{o}}{f_{o}}t\right)\right]\right\}$$
$$= A_{o}\operatorname{Re}\left\{\exp\left[j2\pi\nu_{o}\left(x - \frac{\nu_{o}}{f_{o}}t\right) + j\theta\right]\right\}$$
$$= A_{o}\cos\left\{2\pi\nu_{o}\left(x - \frac{\nu_{o}}{f_{o}}t\right) + \theta\right\}$$

• So the plane wave is completely specified by $E(x,t) = E_o \exp[j2\pi(v_o x)]$

2D Solutions

In 3D, we have that

$$E(x, y, z) = E_o \exp[j2\pi(v_x x + v_y y + v_z z)]$$

– where

$$\sqrt{v_x^2 + v_y^2 + v_z^2} = v_o = \frac{1}{\lambda}$$

So, if
$$v_{\chi} = 0$$
, we have that
 $E(y, z) = E_o \exp[j2\pi(v_y y + v_z z)]$
- where

$$v_y = v_o \sin \theta$$
$$v_z = v_o \cos \theta$$

Direction of Propagation for 2D Solution •If $v_x = 0$,

Intuition from 2D Solution

Direction of Transmission in 2D

•A plane wave arriving at angle θ creates an electric field on the image plane given by

• Angle of departure: $\theta = \sin^{-1} \left(\frac{v_y}{v_o} \right)$

Beam Forming: One transmitted signal

•Excite a signal at z = 0 of the form:

 $u_0(y) = U_1 \exp[j2\pi(y v_1)]$

Beam Forming: Two transmitted signals

•Excite a signal at z = 0 of the form:

 $u_0(y) = U_1 \exp[j2\pi(y v_1)] + U_2 \exp[j2\pi(y v_2)]$

Beam Forming: Arbitrary transmitted signals

•Excite a signal at z = 0 of the form:

$$u_0(y) = \int_{\Re} U_0(v) \exp[j2\pi(y\,v)] \, dv$$

- where $U_0 = \mathcal{F}[u_o]$ is the Fourier transform of u_o .

This "forms a beam" in all directions given by

Propagation between Planes

•For a wave of the form:

•Wave on the z = 0 plane is:

•Wave on the z = d plane is:

$$E(x, y, z) = \exp[j2\pi(v_x x + v_y y + v_z z)]$$
$$u_0(x, y) = \exp[j2\pi(v_x x + v_y y)]$$
$$u_d(x, y) = \exp[j2\pi(v_x x + v_y y + v_z d)]$$

Phase Modulation between Planes

Deriving the Fresnel Phase Modulation Function

•So then we have that

$$\exp[j2\pi v_{z}d] = \exp\left[j2\pi \left(v_{o}^{2} - \left[v_{x}^{2} + v_{y}^{2}\right]\right)^{\frac{1}{2}}d\right]$$

$$= \exp\left[j2\pi dv_{o}\left(1 - \frac{v_{x}^{2} + v_{y}^{2}}{v_{o}^{2}}\right)^{\frac{1}{2}}\right]$$

$$\approx \exp\left[j2\pi dv_{o}\left(1 - \frac{v_{x}^{2} + v_{y}^{2}}{2v_{o}^{2}}\right)\right]$$

$$= \exp[j2\pi dv_{o}\exp\left[-j2\pi dv_{o}\left(\frac{v_{x}^{2} + v_{y}^{2}}{2v_{o}^{2}}\right)\right]$$

$$= \exp[j2\pi dv_{o}\exp\left[-j2\pi dv_{o}\left(\frac{v_{x}^{2} + v_{y}^{2}}{2v_{o}^{2}}\right)\right]$$

$$= \exp[j2\pi dv_{o}\exp\left[-j2\pi dv_{o}\left(\frac{v_{x}^{2} + v_{y}^{2}}{2v_{o}^{2}}\right)\right]$$

Interpretation of Fresnel Phase Modulation

The transfer function is given by

$$H(v_x, v_y) = \exp[j2\pi dv_o] \exp\left[-j2\pi dv_o\left(\frac{v_x^2 + v_y^2}{2v_o^2}\right)\right]$$

- Pure phase shift; no amplitude; \Rightarrow conserves energy

- Phase shift depends on angle $\frac{1}{2}\sin^2\theta$ where $\frac{\sqrt{v_x^2 + v_y^2}}{v_2} = \sin\theta = \sin(\text{tile angle})$ in 3D.

3D Interpretation of Fresnel Phase Modulation

•We can visualize the plane wave on the two planes.

$$u_d(x, y) = H(v_x, v_y) \exp[j2\pi(v_x x + v_y y)]$$

Fresnel Propagation: An LSI System

•Frequency domain transfer function: $H(v_x, v_y) = \exp[j2\pi dv_o] \exp\left[-j2\pi dv_o\left(\frac{v_x^2 + v_y^2}{2v_o^2}\right)\right]$

Space domain point-spread function (psf):

 $h(x, y) = h_o \exp\left[j\pi\left(\frac{x^2 + y^2}{\lambda d}\right)\right] \qquad \qquad \begin{pmatrix} \text{from a table} \\ \text{of transform pairs} \end{pmatrix}$ $h_o = \frac{1}{j\lambda d} \exp\left[j2\pi\frac{d}{\lambda}\right] \qquad \qquad \lambda = \frac{1}{v_o}$

Fresnel Transfer Function

Assumes that: $\frac{v_x^2 + v_y^2}{v_o^2} \ll 1$ $\sin^2(\theta) \ll 1$

•In the frequency domain:

$$U_d(v_x, v_y) = H(v_x, v_y) U_0(v_x, v_y)$$

– where

$$H(v_x, v_y) = \exp[j2\pi dv_o] \exp\left[-j2\pi dv_o\left(\frac{v_x^2 + v_y^2}{2v_o^2}\right)\right]$$

$$U_o(v_x, v_y) = \mathcal{F}[u_o] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_0(x, y) \exp\{-j2\pi(v_x x + v_y y)\} dx dy$$
$$U_1(v_x, v_y) = \mathcal{F}[u_1] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_1(x, y) \exp\{-j2\pi(v_x x + v_y y)\} dx dy$$

Fresnel Convolution

•In the space domain:

$$u_d(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_0(x',y') h(x-x',y-y') dx' dy'$$

 $u_d(x, y) = h(x, y) * u_0(x, y)$

– where

$$h(x, y) = h_o \exp\left[j\pi \frac{d}{\lambda} \left(\frac{x^2 + y^2}{d^2}\right)\right]$$
$$h_o = \frac{\exp\left[j2\pi \frac{d}{\lambda}\right]}{j\lambda d}$$

Fresnel Convolution/PSF Example

•In the space domain:

$$u_d(x, y) = h(x, y) * u_0(x, y)$$

– where

$$h(x, y) = h_o \exp\left[j\pi \frac{d}{\lambda} \left(\frac{x^2 + y^2}{d^2}\right)\right]$$
$$h_o = \frac{\exp\left[j2\pi \frac{d}{\lambda}\right]}{j\lambda d}$$

Fresnel diffraction of circular aperture"

 $h(x, y) * \operatorname{circ}(x, y)$

Reproduced from: <u>https://commons.wikimedia.org/wiki/File:Circular_Aperture_Fresnel_Diffraction_high_res.jpg</u>

Fresnel Transformation

•Derivation

$$u_{d}(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{0}(x',y') h(x-x',y-y') dx' dy'$$

$$= h_{o} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{0}(x',y') \exp\left\{j\pi \frac{(x-x')^{2} + (y-y')^{2}}{\lambda d}\right\} dx' dy'$$

$$= h_{o} \exp\left\{j\pi \frac{x^{2} + y^{2}}{\lambda d}\right\} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{0}(x',y') \exp\left\{j\pi \frac{x'^{2} + y'^{2}}{\lambda d}\right\} \exp\left\{-j2\pi \frac{xx' + yy'}{\lambda d}\right\} dx' dy'$$

$$= h_{o} \exp\left\{j\pi \frac{x^{2} + y^{2}}{\lambda d}\right\} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{u}_{0}(x',y') \exp\left\{-j2\pi \frac{xx' + yy'}{\lambda d}\right\} dx' dy'$$

$$= h_{o} \exp\left\{j\pi \frac{x^{2} + y^{2}}{\lambda d}\right\} \widetilde{U}_{0}\left(\frac{x}{\lambda d}, \frac{y}{\lambda d}\right)$$

Assumes that:

Fresnel Transformation

Derivation

$$\widetilde{u}_{0}(x,y) = \exp\left\{j\pi \frac{x^{2} + y^{2}}{\lambda d}\right\} u_{0}(x,y)$$
$$\widetilde{U}_{0}(v_{x},v_{y}) = \mathcal{F}[\widetilde{u}_{o}(x,y)]$$
$$u_{d}(x,y) = h_{o} \exp\left\{j\pi \frac{x^{2} + y^{2}}{\lambda d}\right\} \widetilde{U}_{0}\left(\frac{x}{\lambda d},\frac{y}{\lambda d}\right)$$

1

Fraunhofer Propagation

Assumes that:

If
$$u_0 = 0$$
 for $||[x, y]|| > a$, then $\frac{a^2}{\lambda d} \ll 1$

•Assume aperture is small, then $\tilde{u}_0(x, y) \approx u_0(x, y)$ and

$$u_d(x, y) = h_o \exp\left\{j\pi \frac{x^2 + y^2}{\lambda d}\right\} U_0\left(\frac{x}{\lambda d}, \frac{y}{\lambda d}\right)$$

– where

$$U_0(v_x, v_y) = \mathcal{F}[u_o(x, y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_0(x, y) \exp\{-j2\pi(v_x x + v_y y)\} dx dy$$

Slit Experiment

•Questions:

- How does wave propagate?
- What is $u_d(x, y) = ?$

Slit Experiment: Which approximation holds?

•Fresnel:

- Holds if $\sin^2(\theta) \ll 1$
- If $\sin^2(\theta) = 0.05$, then $|\theta| \le 13^\circ$

Fraunhofer:

- Holds if $w^2/_{\lambda d} \ll 1$; or equivalently, $d \gg w\left(\frac{w}{\lambda}\right)$
- If $\lambda = 1\mu m$ and w = 1mm, then $d \gg 1m$
- If $\lambda = 1\mu m$ and w = 1 cm, then $d \gg 100 m$

2D Thin Slit Analysis

- •Which approximation:
 - $d \gg w\left(\frac{w}{\lambda}\right) = w \implies \underline{\text{Yes}}! \implies \text{Fraunhofer}$
- Fraunhofer Analysis
 - Field at slit: $u_0(y) = \operatorname{rect}\left(\frac{y}{w}\right)$
 - Field at distance *d*:

$$u_{d}(y) = h_{o} \exp\left\{j\pi \frac{y^{2}}{\lambda d}\right\} U_{0}\left(\frac{y}{\lambda d}\right)$$
$$= h_{o} \exp\left\{j\pi \frac{y^{2}}{\lambda d}\right\} w \operatorname{sinc}\left(\frac{wy}{\lambda d}\right)$$
$$= wh_{o} \exp\left\{j\pi \frac{y^{2}}{\lambda d}\right\} \operatorname{sinc}\left(\frac{y}{d}\right)$$

– Field at distance *d*:

$$\|u_d(y)\|^2 = \left\|U_0\left(\frac{y}{\lambda d}\right)\right\|^2$$
$$= w^2 \operatorname{sinc}^2\left(\frac{y}{d}\right)$$

Thin Slit Result

•Power at distance *d*:

 $\|u_d(x,y)\|^2 = w^2 \operatorname{sinc}^2\left(\frac{y}{d}\right)$

Reproduced from https://commons.wikimedia.org/wiki/File:Wavelength%3Dslitwidthblue3D.gif

•Field at slit:

2D Wider Slit Analysis

- •Which approximation:
 - $d \gg w\left(\frac{w}{\lambda}\right) = 4w \implies \underline{\text{Yes}}! \implies \text{Fraunhofer}$
- Fraunhofer Analysis
 - Field at slit: $u_0(y) = \operatorname{rect}\left(\frac{y}{w}\right)$
 - Field at distance *d*:

$$u_{d}(y) = h_{o} \exp\left\{j\pi \frac{y^{2}}{\lambda d}\right\} U_{0}\left(\frac{y}{\lambda d}\right)$$
$$= h_{o} \exp\left\{j\pi \frac{y^{2}}{\lambda d}\right\} w \operatorname{sinc}\left(\frac{wy}{\lambda d}\right)$$
$$= wh_{o} \exp\left\{j\pi \frac{y^{2}}{\lambda d}\right\} \operatorname{sinc}\left(4\frac{y}{d}\right)$$

– Field at distance *d*:

$$\|u_d(y)\|^2 = \left\| U_0\left(\frac{y}{\lambda d}\right) \right\|^2$$
$$= w^2 \operatorname{sinc}^2\left(\frac{wy}{\lambda d}\right) = w^2 \operatorname{sinc}^2\left(4\frac{y}{d}\right)$$

First null occurs at:	
$\frac{wy}{\lambda d} = 1 \Rightarrow \frac{y}{d} = \frac{\lambda}{w}$	
$\lambda d \stackrel{-1}{\longrightarrow} d \stackrel{-}{w}$	
$y_{\text{null}} = d\left(\frac{\lambda}{w}\right)$	
$\theta_{\rm null} = \sin^{-1}\left(\frac{\lambda}{w}\right)$	

Fresnel Propagation: Light through a large slit

Reproduced from https://commons.wikimedia.org/wiki/File:Wave_Diffraction_4Lambda_Slit.png