Notes on Fourier Optics

-How does light propagate through free space?
-What do lenses do?
-How does a directional antenna work?
-Four important ideas:

- Wave equation
- Optical plane wave and direction of transmission/arrival
- Fresnel approximation: Assumes light is traveling through an aperture
- Fraunhofer approximation: Assumes light is far from the aperture

Electro-Magnetic Waves

-Plane linearly polarized wave

-EM waves are vector fields

- E and B are traveling vector fields
- E is perpendicular to B
- $\vec{p}=E \times B$ where \vec{p} is the direction of travel

The Wave Equation

-From Maxwell's equations:

- We can show that

$$
\nabla^{2} \vec{E}-\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
$$

- For simplicity, we consider a single component of the electric field vector:

$$
\nabla^{2} E-\mu \varepsilon \frac{\partial^{2} E}{\partial t^{2}}=0
$$

- where μ is the permittivity; and ϵ is the dielectric constant; and $c=\frac{1}{\sqrt{\mu \varepsilon}}$ where c is the speed of light in the medium.

Solution to the Wave Equation in Time

-The wave equation is given by

$$
\nabla^{2} E-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=0
$$

-Separation of variables gives solutions of the form

$$
\begin{aligned}
E_{t}(x, y, z, t) & =E_{o} \exp \left[j 2 \pi\left(v_{x} x+v_{y} y+v_{z} z\right)\right] \exp \left[-j 2 \pi f_{o} t\right] \\
& =E_{o} \exp \left[j 2 \pi\left(v_{x} x+v_{y} y+v_{z} z-f_{o} t\right)\right]
\end{aligned}
$$

- where

$$
\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}=v_{o}=\frac{1}{\lambda}=\frac{f_{o}}{c}
$$

Wavelength (m) $\longrightarrow \lambda=\frac{1}{v_{o}}=\frac{c}{f_{o}}$ \longleftarrow Velocity (m/sec)
\longleftrightarrow Frequency (Hz) spatial frequency $\left(\mathrm{m}^{-1}\right)$
-We will assume that f_{o}, v_{o}, and c are all fixed.

Plane Waves

-Plane waves have the form

$$
\begin{aligned}
E_{t}(x, y, z, t)= & E_{o} \exp \left[j 2 \pi\left(v_{x} x+v_{y} y+v_{z} z\right)\right] \exp \left[-j 2 \pi f_{o} t\right] \\
& =E_{o} \exp \left[j 2 \pi\left(v_{o}(\vec{p} \cdot \vec{r})-f_{o} t\right)\right]
\end{aligned}
$$

- where $\vec{r}=[x, y, z], \vec{v}=\left[v_{x}, v_{y}, v_{z}\right], v_{o}=\|\vec{v}\|$ and $\vec{p}=\frac{\vec{v}}{\|\vec{v}\|}$.

Plane Wave Interpretation

-Solution has the form:

$$
\begin{aligned}
& E_{t}(x, y, z, t)=E_{o} \exp \left[j 2 \pi\left(v_{x} x+v_{y} y+v_{z} z\right)\right] \underbrace{\exp \left[-j 2 \pi f_{o} t\right]}_{\text {carrier wave }} \\
& \text { ric field is the real comoonent: }
\end{aligned}
$$

-Electric field is the real component:

$$
\text { Electric Field }=\operatorname{Re}\left\{E_{t}(x, y, z, t)\right\}
$$

-So, we can always recover the space-time solution from:

$$
E(x, y, z)=E_{o} \exp \left[j 2 \pi\left(v_{x} x+v_{y} y+v_{z} z\right)\right]
$$

- where

$$
\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}=v_{o}=\frac{1}{\lambda}
$$

1D Plane Wave Interpretation

-Solution has the form:

$$
\begin{aligned}
E_{t}(x, t) & =E_{o} \exp \left[j 2 \pi\left(v_{o} x\right)\right] \exp \left[-j 2 \pi f_{o} t\right] \\
& =E_{o} \exp \left[j 2 \pi v_{o}\left(x-\frac{v_{o}}{f_{0}} t\right)\right]
\end{aligned}
$$

- Then the electric field is given by

Electric Field $=\operatorname{Re}\left\{E_{t}(x, y, z, t)\right\}$

$$
\begin{aligned}
& =\operatorname{Re}\left\{E_{o} \exp \left[j 2 \pi v_{o}\left(x-\frac{v_{o}}{f_{o}} t\right)\right]\right\} \\
& =A_{o} \operatorname{Re}\left\{\exp \left[j 2 \pi v_{o}\left(x-\frac{v_{o}}{f_{o}} t\right)+j \theta\right]\right\} \\
& =A_{o} \cos \left\{2 \pi v_{o}\left(x-\frac{v_{o}}{f_{o}} t\right)+\theta\right\}
\end{aligned}
$$

$$
E_{o}=A_{o} e^{j \theta}
$$

- So the plane wave is completely specified by

$$
E(x, t)=E_{o} \exp \left[j 2 \pi\left(v_{o} x\right)\right]
$$

2D Solutions

- In 3D, we have that

$$
E(x, y, z)=E_{o} \exp \left[j 2 \pi\left(v_{x} x+v_{y} y+v_{z} z\right)\right]
$$

- where

$$
\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}=v_{o}=\frac{1}{\lambda}
$$

-So, if $v_{x}=0$, we have that

$$
E(y, z)=E_{o} \exp \left[j 2 \pi\left(v_{y} y+v_{z} z\right)\right]
$$

- where

$$
\begin{aligned}
& v_{y}=v_{o} \sin \theta \\
& v_{z}=v_{o} \cos \theta
\end{aligned}
$$

Direction of Propagation for 2D Solution

-If $v_{x}=0$,

$$
E(y, z)=E_{o} \exp \left[j 2 \pi\left(y v_{o} \sin \theta+z v_{o} \cos \theta\right)\right]
$$

Intuition from 2D Solution

-The E field on the image plane $(z=0)$ is given by:

$$
\begin{aligned}
u_{0}(y) & =E_{o} \exp \left[j 2 \pi\left(y v_{o} \sin \theta+0 v_{o} \cos \theta\right)\right] \\
& =E_{o} \exp \left[j 2 \pi\left(y v_{o} \sin \theta\right)\right]
\end{aligned}
$$

$$
v_{y}=v_{o} \sin \theta
$$

$$
\lambda_{y}=\frac{\lambda}{\sin \theta}
$$

$$
z=0
$$

Direction of Transmission in 2D

-A plane wave arriving at angle θ creates an electric field on the image plane given by

$$
u_{0}(y)=E_{o} \exp [j 2 \pi(y \underbrace{v_{o} \sin \theta}_{v_{y}})]
$$

- Angle of departure:

$$
\theta=\sin ^{-1}\left(\frac{v_{y}}{v_{o}}\right)
$$

Imaging plane $z=0$

Beam Forming: One transmitted signal

-Excite a signal at $z=0$ of the form:

$$
u_{0}(y)=U_{1} \exp \left[j 2 \pi\left(y v_{1}\right)\right]
$$

-This "forms a beam" in the direction $\theta_{1}=\sin ^{-1}\left(\frac{v_{1}}{v_{o}}\right)$

Beam Forming: Two transmitted signals

-Excite a signal at $z=0$ of the form:

$$
u_{0}(y)=U_{1} \exp \left[j 2 \pi\left(y v_{1}\right)\right]+U_{2} \exp \left[j 2 \pi\left(y v_{2}\right)\right]
$$

-This "forms a beam" in the directions $\theta_{1}=\sin ^{-1}\left(\frac{v_{1}}{v_{o}}\right)$ and $\theta_{2}=\sin ^{-1}\left(\frac{v_{2}}{v_{o}}\right)$

Beam Forming: Arbitrary transmitted signals

-Excite a signal at $z=0$ of the form:

$$
u_{0}(y)=\int_{\mathfrak{R}} U_{0}(v) \exp [j 2 \pi(y v)] d v
$$

- where $U_{0}=\mathcal{F}\left[u_{o}\right]$ is the Fourier transform of u_{o}.
-This "forms a beam" in all directions given by

$z=0$

$z=0$

Propagation between Planes

-For a wave of the form:
-Wave on the $z=0$ plane is:
-Wave on the $z=d$ plane is:

$$
\begin{aligned}
& E(x, y, z)=\exp \left[j 2 \pi\left(v_{x} x+v_{y} y+v_{z} z\right)\right] \\
& u_{0}(x, y)=\exp \left[j 2 \pi\left(v_{x} x+v_{y} y\right)\right] \\
& u_{d}(x, y)=\exp \left[j 2 \pi\left(v_{x} x+v_{y} y+v_{z} d\right)\right]
\end{aligned}
$$

Phase Modulation between Planes

-For a wave of the form:
-Wave on the $z=0$ plane of:
-Wave on the $z=d$ plane of:

$$
\begin{aligned}
& E(x, y, z)=\exp \left[j 2 \pi\left(v_{x} x+v_{y} y+v_{z} z\right)\right] \\
& u_{0}(x, y)=\exp \left[j 2 \pi\left(v_{x} x+v_{y} y\right)\right] \\
& \begin{aligned}
u_{d}(x, y) & =\exp \left[j 2 \pi\left(v_{x} x+v_{y} y\right)\right] \exp \left[j 2 \pi\left(v_{z} d\right)\right] \\
& =\exp \left[j 2 \pi\left(v_{z} \mathrm{~d}\right)\right] u_{0}(x, y)=H_{d} u_{0}(x, y)
\end{aligned}
\end{aligned}
$$

Deriving the Fresnel Phase Modulation Function

-So then we have that

$$
\begin{aligned}
\exp \left[j 2 \pi v_{z} d\right] & =\exp \left[j 2 \pi\left(v_{o}^{2}-\left[v_{x}^{2}+v_{y}^{2}\right]\right)^{\frac{1}{2}} d\right] \\
& =\exp \left[j 2 \pi d v_{o}\left(1-\frac{v_{x}^{2}+v_{y}^{2}}{v_{o}^{2}}\right)^{\frac{1}{2}}\right] \\
& \approx \exp \left[j 2 \pi d v_{o}\left(1-\frac{v_{x}^{2}+v_{y}^{2}}{2 v_{o}^{2}}\right)\right] \\
& =\exp \left[j 2 \pi d v_{o}\right] \exp \left[-j 2 \pi d v_{o}\left(\frac{v_{x}^{2}+v_{y}^{2}}{2 v_{o}^{2}}\right)\right] \\
& =\exp \left[j 2 \pi d v_{o}\right] \exp \left[-j 2 \pi d\left(\frac{v_{x}^{2}+v_{y}^{2}}{2 v_{o}}\right)\right]
\end{aligned}
$$

Useful Facts:

$$
\begin{aligned}
& v_{o}^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2} \\
& \text { For }|\beta| \ll 1, \sqrt{1-\beta} \approx 1-\frac{\beta}{2}
\end{aligned}
$$

Assumes that:

$$
\begin{aligned}
& \frac{v_{x}^{2}+v_{y}^{2}}{v_{o}^{2}} \ll 1 \\
& \sin ^{2}(\theta) \ll 1
\end{aligned}
$$

Interpretation of Fresnel Phase Modulation

-The transfer function is given by

$$
H\left(v_{x}, v_{y}\right)=\exp \left[j 2 \pi d v_{o}\right] \exp \left[-j 2 \pi d v_{o}\left(\frac{v_{x}^{2}+v_{y}^{2}}{2 v_{o}^{2}}\right)\right]
$$

- Pure phase shift; no amplitude; \Rightarrow conserves energy
- Phase shift depends on angle $\frac{1}{2} \sin ^{2} \theta$ where $\frac{\sqrt{v_{x}^{2}+v_{y}^{2}}}{v_{o}}=\sin \theta=\sin$ (tile angle) in 3D.

3D Interpretation of Fresnel Phase Modulation

-We can visualize the plane wave on the two planes.

$$
u_{d}(x, y)=H\left(v_{x}, v_{y}\right) \exp \left[j 2 \pi\left(v_{x} x+v_{y} y\right)\right]
$$

$$
\frac{1}{\sqrt{v_{x}^{2}+v_{y}^{2}}} \quad y \uparrow \begin{aligned}
u_{0}(x, y) & =\exp \left[j 2 \pi\left(v_{x} x+v_{y} y\right)\right] \\
z & =0
\end{aligned}
$$

This is a linear space invariant function!

Fresnel Propagation: An LSI System

-Frequency domain transfer function:

$$
H\left(v_{x}, v_{y}\right)=\exp \left[j 2 \pi d v_{o}\right] \exp \left[-j 2 \pi d v_{o}\left(\frac{v_{x}^{2}+v_{y}^{2}}{2 v_{o}^{2}}\right)\right]
$$

-Space domain point-spread function (psf):

$$
\begin{aligned}
h(x, y) & =h_{o} \exp \left[j \pi\left(\frac{x^{2}+y^{2}}{\lambda d}\right)\right] \\
h_{o} & =\frac{1}{j \lambda d} \exp \left[j 2 \pi \frac{d}{\lambda}\right]
\end{aligned}
$$

$$
\lambda=\frac{1}{v_{0}}
$$

Fresnel Transfer Function

-In the frequency domain:

$$
\begin{aligned}
& \frac{v_{x}^{2}+v_{y}^{2}}{v_{o}^{2}} \ll 1 \\
& \sin ^{2}(\theta) \ll 1
\end{aligned}
$$

$$
U_{d}\left(v_{x}, v_{y}\right)=H\left(v_{x}, v_{y}\right) U_{0}\left(v_{x}, v_{y}\right)
$$

- where

$$
\begin{gathered}
H\left(v_{x}, v_{y}\right)=\exp \left[j 2 \pi d v_{o}\right] \exp \left[-j 2 \pi d v_{o}\left(\frac{v_{x}^{2}+v_{y}^{2}}{2 v_{o}^{2}}\right)\right] \\
U_{o}\left(v_{x}, v_{y}\right)=\mathcal{F}\left[u_{o}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{0}(x, y) \exp \left\{-j 2 \pi\left(v_{x} x+v_{y} y\right)\right\} d x d y \\
U_{1}\left(v_{x}, v_{y}\right)=\mathcal{F}\left[u_{1}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{1}(x, y) \exp \left\{-j 2 \pi\left(v_{x} x+v_{y} y\right)\right\} d x d y
\end{gathered}
$$

Fresnel Convolution

- In the space domain:

Assumes that:

$$
\begin{aligned}
& \frac{x^{2}+y^{2}}{d^{2}} \ll 1 \\
& \sin ^{2}(\theta) \ll 1
\end{aligned}
$$

$$
\begin{gathered}
u_{d}(x, y)=h(x, y) * u_{0}(x, y) \\
u_{d}(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{0}\left(x^{\prime}, y^{\prime}\right) h\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime}
\end{gathered}
$$

- where

$$
\begin{gathered}
h(x, y)=h_{o} \exp \left[j \pi \frac{d}{\lambda}\left(\frac{x^{2}+y^{2}}{d^{2}}\right)\right] \\
h_{o}=\frac{\exp \left[j 2 \pi \frac{d}{\lambda}\right]}{j \lambda d}
\end{gathered}
$$

Fresnel Convolution/PSF Example

-In the space domain:

$$
u_{d}(x, y)=h(x, y) * u_{0}(x, y)
$$

- where

$$
\begin{gathered}
h(x, y)=h_{o} \exp \left[j \pi \frac{d}{\lambda}\left(\frac{x^{2}+y^{2}}{d^{2}}\right)\right] \\
h_{o}=\frac{\exp \left[j 2 \pi \frac{d}{\lambda}\right]}{j \lambda d}
\end{gathered}
$$

Fresne1 diffraction of circular aperture"

Fresnel Transformation

-Derivation

$$
\begin{aligned}
u_{d}(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{0}\left(x^{\prime}, y^{\prime}\right) h\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime} \\
& =h_{o} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{0}\left(x^{\prime}, y^{\prime}\right) \exp \left\{j \pi \frac{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}{\lambda d}\right\} d x^{\prime} d y^{\prime} \\
& =h_{o} \exp \left\{j \pi \frac{x^{2}+y^{2}}{\lambda d}\right\} \int_{-\infty}^{\infty}(\theta) \ll 1 \\
& =h_{o} \exp \left\{j \pi \frac{x^{2}+y^{2}}{\lambda d}\right\} u_{0}\left(x^{\prime}, y^{\prime}\right) \exp \left\{j \pi \frac{x^{\prime 2}+y^{\prime 2}}{\lambda d}\right\} \exp \left\{-j 2 \pi \frac{x x^{\prime}+y y^{\prime}}{\lambda d}\right\} d x^{\prime} d y^{\prime} \\
& =h_{o} \exp \left\{j \pi \frac{x^{2}+y^{2}}{\lambda d}\right\} \widetilde{u}_{0}\left(\frac{x}{\lambda d}, \frac{y}{\lambda d}\right)
\end{aligned}
$$

Assumes that:

$$
\begin{aligned}
& \frac{x^{2}+y^{2}}{d^{2}} \ll 1 \\
& \sin ^{2}(\theta) \ll 1
\end{aligned}
$$

Fresnel Transformation

-Derivation

Assumes that:

$$
\begin{aligned}
& \frac{x^{2}+y^{2}}{d^{2}} \ll 1 \\
& \sin ^{2}(\theta) \ll 1
\end{aligned}
$$

$$
\begin{gathered}
\tilde{u}_{0}(x, y)=\exp \left\{j \pi \frac{x^{2}+y^{2}}{\lambda d}\right\} u_{0}(x, y) \\
\widetilde{U}_{0}\left(v_{x}, v_{y}\right)=\mathcal{F}\left[\tilde{u}_{o}(x, y)\right] \\
u_{d}(x, y)=h_{o} \exp \left\{j \pi \frac{x^{2}+y^{2}}{\lambda d}\right\} \widetilde{U}_{0}\left(\frac{x}{\lambda d}, \frac{y}{\lambda d}\right)
\end{gathered}
$$

Assumes that:

$$
\text { If } u_{0}=0 \text { for }\|[x, y]\|>a, \text { then } \frac{a^{2}}{\lambda d} \ll 1
$$

- Assume aperture is small, then $\tilde{u}_{0}(x, y) \approx u_{0}(x, y)$ and

$$
u_{d}(x, y)=h_{o} \exp \left\{j \pi \frac{x^{2}+y^{2}}{\lambda d}\right\} U_{0}\left(\frac{x}{\lambda d}, \frac{y}{\lambda d}\right)
$$

- where

$$
U_{0}\left(v_{x}, v_{y}\right)=\mathcal{F}\left[u_{o}(x, y)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{0}(x, y) \exp \left\{-j 2 \pi\left(v_{x} x+v_{y} y\right)\right\} d x d y
$$

Slit Experiment

-Questions:

- How does wave propagate?
- What is $u_{d}(x, y)=$?

Slit Experiment: Which approximation holds?

-Fresnel:

- Holds if $\sin ^{2}(\theta) \ll 1$
- If $\sin ^{2}(\theta)=0.05$, then $|\theta| \leq 13^{\circ}$
-Fraunhofer:
- Holds if $w^{2} / \lambda d<1$; or equivalently, $d \gg w\left(\frac{w}{\lambda}\right)$
- If $\lambda=1 \mu \mathrm{~m}$ and $w=1 \mathrm{~mm}$, then $d \gg 1 \mathrm{~m}$
- If $\lambda=1 \mu \mathrm{~m}$ and $w=1 \mathrm{~cm}$, then $d \gg 100 \mathrm{~m}$

2D Thin Slit Analysis

-Which approximation:

$$
-\quad d \gg w\left(\frac{w}{\lambda}\right)=w \Rightarrow \text { Yes! } \Rightarrow \text { Fraunhofer }
$$

-Fraunhofer Analysis

$-\quad$ Field at slit: $u_{0}(y)=\operatorname{rect}\left(\frac{y}{w}\right)$

- Field at distance d :

$$
\begin{aligned}
u_{d}(y)= & h_{o} \exp \left\{j \pi \frac{y^{2}}{\lambda d}\right\} U_{0}\left(\frac{y}{\lambda d}\right) \\
& =h_{o} \exp \left\{j \pi \frac{y^{2}}{\lambda d}\right\} w \operatorname{sinc}\left(\frac{w y}{\lambda d}\right) \\
& =w h_{o} \exp \left\{j \pi \frac{y^{2}}{\lambda d}\right\} \operatorname{sinc}\left(\frac{y}{d}\right)
\end{aligned}
$$

- Field at distance d :

$$
\begin{aligned}
\left\|u_{d}(y)\right\|^{2} & =\left\|U_{0}\left(\frac{y}{\lambda d}\right)\right\|^{2} \\
& =w^{2} \operatorname{sinc}^{2}\left(\frac{y}{d}\right)
\end{aligned}
$$

Thin Slit Result

Example:
Thin slit
$\frac{w}{\lambda}=1 ; \frac{d}{\lambda}=15$

-Field at slit:
-Field at distance d :
$u_{0}(x, y)=\operatorname{rect}\left(\frac{y}{w}\right)$

$$
u_{d}(x, y)=w h_{o} \exp \left\{j \pi \frac{y^{2}}{\lambda d}\right\} \operatorname{sinc}\left(\frac{y}{d}\right)
$$

-Power at distance d :

$$
\left\|u_{d}(x, y)\right\|^{2}=w^{2} \operatorname{sinc}^{2}\left(\frac{y}{d}\right)
$$

2D Wider Slit Analysis

-Which approximation:

$$
-\quad d \gg w\left(\frac{w}{\lambda}\right)=4 w \Rightarrow \text { Yes! } \Rightarrow \text { Fraunhofer }
$$

-Fraunhofer Analysis

$-\quad$ Field at slit: $u_{0}(y)=\operatorname{rect}\left(\frac{y}{w}\right)$

- Field at distance d :

$$
\begin{aligned}
u_{d}(y)= & h_{o} \exp \left\{j \pi \frac{y^{2}}{\lambda d}\right\} U_{0}\left(\frac{y}{\lambda d}\right) \\
& =h_{o} \exp \left\{j \pi \frac{y^{2}}{\lambda d}\right\} w \operatorname{sinc}\left(\frac{w y}{\lambda d}\right) \\
& =w h_{o} \exp \left\{j \pi \frac{y^{2}}{\lambda d}\right\} \operatorname{sinc}\left(4 \frac{y}{d}\right)
\end{aligned}
$$

- Field at distance d :

First null occurs at:

$$
\begin{aligned}
& \frac{w y}{\lambda d}=1 \Rightarrow \frac{y}{d}=\frac{\lambda}{w} \\
& y_{\text {null }}=d\left(\frac{\lambda}{w}\right) \\
& \theta_{\text {null }}=\sin ^{-1}\left(\frac{\lambda}{w}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left\|u_{d}(y)\right\|^{2} & =\left\|U_{0}\left(\frac{y}{\lambda d}\right)\right\|^{2} \\
& =w^{2} \operatorname{sinc}^{2}\left(\frac{w y}{\lambda d}\right)=w^{2} \operatorname{sinc}^{2}\left(4 \frac{y}{d}\right)
\end{aligned}
$$

Fresnel Propagation: Light through a large slit

Example:
Thin slit

$$
\frac{w}{\lambda}=4 ; \frac{d}{\lambda}=32
$$

-Field at slit:
-Field at distance d :

$$
u_{0}(x, y)=\operatorname{rect}\left(\frac{y}{w}\right)
$$

$$
u_{d}(x, y)=w h_{o} \exp \left\{j \pi \frac{x^{2}}{\lambda d}\right\} \operatorname{sinc}\left(\frac{y w}{\lambda d}\right)
$$

$$
\left\|u_{d}(x, y)\right\|^{2}=w^{2} \operatorname{sinc}^{2}\left(\frac{y w}{\lambda d}\right)
$$

