1-D Rep Operation

The rep operator periodically replicates a function with some specified period T.

$$
\operatorname{rep}_{T}[x(t)]=\sum_{k=-\infty}^{\infty} x(t-k T)
$$

If $x(t)$ looks like

Then $\operatorname{rep}_{T}[x(t)]$ looks like

The resulting function is periodic with period T.

1-D Comb Operation

The comb operator multiplies a function by a periodic train of impulses.

$$
\begin{aligned}
\operatorname{comb}_{T}[x(t)] & =\sum_{k=-\infty}^{\infty} \delta(t-k T) x(t) \\
& =x(t) \sum_{k=-\infty}^{\infty} \delta(t-k T)
\end{aligned}
$$

If $x(t)$ looks like

Then $\operatorname{comb}_{T}[x(t)]$ looks like

The spacing between impulses is T.

1-D Rep and Comb Transform Properties

Assume that:

$$
x(t) \stackrel{C T F T}{\Leftrightarrow} X(f)
$$

Then the transform relationship is:

$$
\begin{aligned}
& \operatorname{comb}_{T}[x(t)] \stackrel{C T F T}{\Leftrightarrow} \frac{1}{T} \operatorname{rep}_{\frac{1}{T}}[X(f)] \\
& \operatorname{rep}_{T}[x(t)] \stackrel{C T F T}{\Leftrightarrow} \frac{1}{T} \operatorname{comb}_{\frac{1}{T}}[X(f)]
\end{aligned}
$$

2-D Rep and Comb Operators

2-D Rep function:

$$
\begin{aligned}
& \operatorname{rep}_{X, Y}[f(x, y)] \\
& =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(x-m X, y-n Y)
\end{aligned}
$$

2-D Comb function:

$$
\begin{aligned}
& \operatorname{comb}_{X, Y}[f(x, y)] \\
& =f(x, y) \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x-m X, y-n Y)
\end{aligned}
$$

2-D Rep and Comb Transform Properties

Assume that:

$$
f(x, y) \stackrel{C S F T}{\Leftrightarrow} F(u, v)
$$

Then the transform relationship is:

$$
\begin{aligned}
& \operatorname{comb}_{X, Y}[f(x, y)] \stackrel{C S F T}{\Leftrightarrow} \frac{1}{X Y} \operatorname{rep}_{\frac{1}{X}, \frac{1}{Y}}[F(u, v)] \\
& \operatorname{rep}_{X, Y}[f(x, y)] \stackrel{C S F T}{\Leftrightarrow} \frac{1}{X Y} \operatorname{comb}_{\frac{1}{X}, \frac{1}{Y}}[F(u, v)]
\end{aligned}
$$

