1-D Rate Conversion

• Decimation
 – Reduce the sampling rate of a discrete-time signal.
 – Low sampling rate reduces storage and computation requirements.

• Interpolation
 – Increase the sampling rate of a discrete-time signal.
 – Higher sampling rate preserves fidelity.
1-D Periodic Subsampling

• Time domain subsampling of \(x(n) \) with period \(D \)
 \[
y(n) = x(Dn)
\]

\[
x(n) \quad \boxed{D} \quad y(r)
\]

• Frequency domain representation
 \[
 Y(e^{j\omega}) = \frac{1}{D} \sum_{k=0}^{D-1} X \left(e^{j(\omega - 2\pi k)/D} \right)
\]

• Problem: Frequencies above \(\pi/D \) will alias.

• Example when \(D = 2 \)

 ![Diagram](image.png)

 • Solution: Remove frequencies above \(\pi/D \).
Decimation System

\[x(n) \xrightarrow{H(e^{j\omega})} \xrightarrow{D} y(n) \]

- Apply the filter \(H(e^{j\omega}) \) to remove high frequencies
 - For \(|\omega| < \pi\)
 \[H(e^{j\omega}) = \text{rect}\left(\frac{D\omega}{2\pi}\right) \]
 - For all \(\omega\)
 \[H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \text{rect}\left(\frac{D\omega - k2\pi}{2\pi}\right) \]
 \[= \text{prect}_{2\pi/D}(\omega) \]
 - Impulse response
 \[h(n) = \frac{1}{D} \text{sinc}(n/D) \]

- Frequency domain representation
 \[Y(e^{j\omega}) = \frac{1}{D} \sum_{k=0}^{D-1} H\left(e^{j(\omega-2\pi k)/D}\right) X\left(e^{j(\omega-2\pi k)/D}\right) \]
Graphical View of Decimation for $D = 2$

- Spectral content of signal
 \[X(e^{j\omega}) \]

- Spectral content of filtered signal
 \[H(e^{j\omega}) X(e^{j\omega}) \]

- Spectral content of decimated signal
 \[Y(e^{j\omega}) = \frac{1}{D} \sum_{k=0}^{D-1} H\left(e^{j(\omega-2\pi k)/D}\right) X\left(e^{j(\omega-2\pi k)/D}\right) \]
Decimation for Images

• Extension to decimation of images is direct

• Apply 2-D Filter

\[f(i, j) = h(i, j) \ast x(i, j) \]

• Subsample result

\[y(i, j) = f(Di, Dj) \]

• Ideal choice of filter is

\[h(m, n) = \frac{1}{D^2} \text{sinc}(m/D)\text{sinc}(n/D) \]

• Problems:

 – Filter has infinite extent.
 – Filter is not strictly positive.
Alternative Filters for Image Decimation

• Direct subsampling
 \[h(m, n) = \delta(m, n) \]
 – Advantages/Disadvantages:
 * Low computation
 * Excessive aliasing

• Block averaging
 \[h(m, n) = \delta(m, n) + \delta(m + 1, n) + \delta(m, n + 1) + \delta(m + 1, n + 1) \]
 – Advantages/Disadvantages:
 * Low computation
 * Some aliasing

• Sinc function
 \[h(m, n) = \frac{1}{D^2} \text{sinc}(m/D, n/D) \]
 – Advantages/Disadvantages:
 * Optimal, if signal is band limited...
 * High computation
Decimation Filters

Block averaging filter

Sinc filter
Original Image

• Full resolution
Image Decimation by 4 using Subsampling

• Severe aliasing
Image Decimation by 8 using Subsampling

- More severe aliasing
Image Decimation by 4 using Block Averaging

- Sharp, but with some aliasing
Image Decimation by 4 using Sinc Filter

- Theoretically optimal, but not necessarily the best visual quality
1-D Up-Sampling

• Up-sampling by \(L \)

\[
y(n) = \begin{cases}
 x(n/L) & \text{if } n = KL \text{ for some } K \\
 0 & \text{otherwise}
\end{cases}
\]

or the alternative form

\[
y(n) = \sum_{m=-\infty}^{\infty} x(m) \delta(n - mL)
\]

• Example for \(L = 3 \)

Discrete time signal \(x(n) \)
Up-Sampling in the Frequency Domain

• Up-sampling by L

$$y(n) = \sum_{m=-\infty}^{\infty} x(m) \delta(n - mL)$$

• In the frequency domain

$$Y(e^{j\omega}) = X(e^{j\omega L})$$

• Example for $L = 3$

![DTFT of x(n)](image1.png)

![DTFT of y(n)](image2.png)
Interpolation in the Frequency Domain

\[Y(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega L}) \]

- Interpolating filter has the form
- Example for \(L = 3 \)

![DTFT of y(n)](image-url)
Interpolating Filter

\[x(n) \xrightarrow{\mathbf{L}} H(e^{j\omega}) \xrightarrow{} y(n) \]

- In the frequency domain
 \[H(e^{j\omega}) = L\text{prect}_{2\pi/L}(\omega) \]

- In the time domain
 \[h(n) = \text{sinc}\left(\frac{n}{L}\right) \]

Interpolating filter in Time

Interpolating filter in Frequency
Interpolation in the Time Domain

\[
x(n) \xrightarrow{L} H(e^{j\omega}) \rightarrow y(n)
\]

- In the frequency domain

\[
Y(e^{j\omega}) = X(e^{j\omega L})
\]

- Example for \(L = 3 \)
2-D Interpolation

\[x(n) \xrightarrow{\mathcal{U}(L,L)} H(e^{j\nu}, e^{j\mu}) \xrightarrow{} y(n) \]

- **Up-sampling**

\[
y(m, n) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} x(k, l) \delta(m - kL, n - lL)
\]

- **In the frequency domain**

\[
H(e^{j\mu}, e^{j\nu}) = \text{prect}_{2\pi/L}(\mu) \text{prect}_{2\pi/L}(\nu)
\]

\[
h(m, n) = \text{sinc} \left(\frac{m}{L}, \frac{n}{L} \right)
\]

- **Problems:** sinc function impulse response
 - Infinite support; infinite computation
 - Negative sidelobes; ringing artifacts at edges
Pixel Replication

- Impulse response of filter
 \[h(m, n) = \begin{cases}
 1 & \text{for } 0 \leq m \leq L - 1 \text{ and } 0 \leq n \leq L - 1 \\
 0 & \text{otherwise}
\end{cases} \]

- Replicates each pixel \(L^2 \) times
Bilinear Interpolation

\[x(n) \xrightarrow{\uparrow(L,L)} H(e^{j\nu}, e^{j\mu}) \xrightarrow{} y(n) \]

- Impulse response of filter

\[h(m, n) = \Lambda(m/L) \Lambda(n/L) \]

- Results in linear interpolation of intermediate pixels