Opponent Color Spaces

- Perception of color is usually not best represented in RGB.
- A better model of HVS is the so-call opponent color model.
- Opponent color space has three components:
 - O_1 is luminance component
 - O_2 is the red-green channel
 \[O_2 = G - R \]
 - O_3 is the blue-yellow channel
 \[O_3 = B - Y = B - (R + G) \]
- Comments:
 - People don’t perceive redish-greens, or bluish-yellows.
 - As we discussed, O_1 has a bandpass CSF.
 - O_2 and O_3 have low pass CSF’s with lower frequency cut-off.
Opponent Channel Contrast Sensitivity Functions (CSF)

- Typical CSF functions looks like the following.
Consequences of Opponent Channel CSF

- Luminance channel is
 - Bandpass function
 - Wide band width \Rightarrow high spatial resolution.
 - Low frequency cut-off \Rightarrow insensitive to average luminance level.

- Chrominance channels are
 - Lowpass function
 - Lower band width \Rightarrow low spatial resolution.
 - Low pass \Rightarrow sensitive to absolute chromaticity (hue and saturation).
Some Practical Consequences of Opponent Color Spaces

- Analog video has less bandwidth in I and Q channels.
- Chrominance components are typically subsampled 2-to-1 in image compression applications.
- Black text on white paper is easy to read. (couples to O_1)
- Yellow text on white paper is difficult to read. (couples to O_3)
- Blue text on black background is difficult to read. (couples to O_3)
- Color variations that do not change O_1 are called “isoluminant”.
- Hue refers to angle of color vector in (O_2, O_3) space.
- Saturation refers to magnitude of color vector in (O_2, O_3) space.
Opponent Color Space of Wandell

- First define the LMS color system which is approximately given by

\[
\begin{bmatrix}
 L \\
 M \\
 S
\end{bmatrix}
=
\begin{bmatrix}
 0.2430 & 0.8560 & -0.0440 \\
 -0.3910 & 1.1650 & 0.0870 \\
 0.0100 & -0.0080 & 0.5630
\end{bmatrix}
\begin{bmatrix}
 X \\
 Y \\
 Z
\end{bmatrix}
\]

- The opponent color space transform is then\(^1\)

\[
\begin{bmatrix}
 O_1 \\
 O_2 \\
 O_3
\end{bmatrix}
=
\begin{bmatrix}
 1 & 0 & 0 \\
 -0.59 & 0.80 & -0.12 \\
 -0.34 & -0.11 & 0.93
\end{bmatrix}
\begin{bmatrix}
 L \\
 M \\
 S
\end{bmatrix}
\]

- We may use these two transforms together with the transform from sRGB to XYZ to compute the following transform.

\[
\begin{bmatrix}
 O_1 \\
 O_2 \\
 O_3
\end{bmatrix}
=
\begin{bmatrix}
 0.2814 & 0.6938 & 0.0638 \\
 -0.0971 & 0.1458 & -0.0250 \\
 -0.0930 & -0.2529 & 0.4665
\end{bmatrix}
\begin{bmatrix}
 sR \\
 sG \\
 sB
\end{bmatrix}
\]

- Comments:
 - \(O_1\) is luminance component
 - \(O_2\) is referred to as the red-green channel (G-R)
 - \(O_3\) is referred to as the blue-yellow channel (B-Y)
 - Also see the work of Mullen ’85\(^2\) and associated color transforms\(^3\)

Paradox?

• Why is blue text on yellow paper easy to read??

• Shouldn’t this be hard to read since it stimulates the yellow-blue color channel?
Better Understanding Opponent Color Spaces

• The XYZ to opponent color transformation is:

\[
\begin{bmatrix}
O_1 \\
O_2 \\
O_3
\end{bmatrix}
= \begin{bmatrix}
0.2430 & 0.8560 & -0.0440 \\
-0.4574 & 0.4279 & 0.0280 \\
-0.0303 & -0.4266 & 0.5290
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
\]

\[
= \begin{bmatrix}
v_y \\
v_{gr} \\
v_{by}
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
\]

• What are \(v_y, v_{gr}, \) and \(v_{by} \)?

 – They are row vectors in the XYZ color space.
 – \(v_{gr} \) is a vector point from red to green
 – \(v_{by} \) is a vector point from yellow to blue
 – They are not orthogonal!
Plots of v_y, v_{gr}, and v_{by}

Opponent Color Directions of Color Matching Functions
Answer to Paradox

• Since v_y, v_{gr}, and v_{by} are not orthogonal

$$
\begin{bmatrix}
 v_y \\
v_{gr} \\
v_{by}
\end{bmatrix}
\begin{bmatrix}
 v_y^t \\
v_{gr}^t \\
v_{by}^t
\end{bmatrix} \neq \text{identity matrix}
$$

• Blue text on yellow background produces and stimulus in the v_{by} space.

$$
\begin{bmatrix}
 O_1 \\
 O_2 \\
 O_3
\end{bmatrix} =
\begin{bmatrix}
 v_y \\
v_{gr} \\
v_{by}
\end{bmatrix} v_{by}^t =
\begin{bmatrix}
 -0.3958 \\
 -0.1539 \\
 0.4627
\end{bmatrix}
$$

• This stimulus is not isoluminant!

• Blue is much darker than yellow.
Basis Vectors for Opponent Color Spaces

• The transformation from opponent color space to XYZ is:

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} =
\begin{bmatrix}
0.9341 & -1.7013 & 0.1677 \\
0.9450 & 0.4986 & 0.0522 \\
0.8157 & 0.3047 & 1.9422
\end{bmatrix}
\begin{bmatrix}
O_1 \\
O_2 \\
O_3
\end{bmatrix}
\]

\[
= \begin{bmatrix} c_y & c_{gr} & c_{by} \end{bmatrix}
\begin{bmatrix}
O_1 \\
O_2 \\
O_3
\end{bmatrix}
\]

• What are \(c_y\), \(c_{gr}\), and \(c_{by}\)?

 – They are column vectors in XYZ space.
 – \(c_{gr}\) is a vector which has no luminance component.
 – \(c_{by}\) is a vector which has no luminance component.
 – They are orthogonal to the vectors \(v_y\), \(v_{gr}\), and \(v_{by}\).
Plots of c_y, c_{gr}, and c_{by}

Opponent Color Directions of Color Matching Functions
Interpretation of Basis Vectors

- Since c_y, c_{gr}, and c_{by} are orthogonal to v_y, v_{gr}, and v_{by}, we have

$$
\begin{bmatrix}
 v_y \\
 v_{gr} \\
 v_{by}
\end{bmatrix}
\begin{bmatrix}
 c_y \\
 c_{gr} \\
 c_{by}
\end{bmatrix}
=
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
$$

- Therefore, we have that

$$
\begin{bmatrix}
 O_1 \\
 O_2 \\
 O_3
\end{bmatrix}
=
\begin{bmatrix}
 v_y \\
 v_{gr} \\
 v_{by}
\end{bmatrix}
\begin{bmatrix}
 c_{by}
\end{bmatrix}
=
\begin{bmatrix}
 0.2430 & 0.8560 & -0.0440 \\
 -0.4574 & 0.4279 & 0.0280 \\
 -0.0303 & -0.4266 & 0.5290
\end{bmatrix}
\begin{bmatrix}
 0.1677 \\
 0.0522 \\
 1.9422
\end{bmatrix}
=
\begin{bmatrix}
 0 \\
 0 \\
 1
\end{bmatrix}
$$

- So, c_{by} is an isoluminant color variation.

- Something like a bright saturated blue on a dark red.
Solution to Paradox

• Why is blue text on yellow paper is easy to read??

• Solution:
 – The blue-yellow combination generates the input v_{by}.
 – This input vector stimulates all three opponent channels because it is not orthogonal to c_y, c_{gr}, and c_{by}.
 – In particular, it strongly stimulates c_y because it is not iso-luminant.