Introduction to
EE637 Digital Image Processing I

• Prerequisites:
 – EE301 - Undergraduate signals and systems
 – EE302 - Undergraduate probability

• Course Objectives:
 – Learn analytical methods of image and 2-D signal processing.
 – Learn techniques commonly used in image processing.
 – Develop experience in using computers to process images.

• Course Text (optional):

• Supplementary references:
Course Structure

1. Course web page
 - http://www.ece.purdue.edu/~bouman/ee637
 - Contains class notes, laboratories, homeworks, and exams

2. Lectures emphasize topical coverage
 - Print out course notes before lecture
 - Lectures cover details of analytical methods

3. Laboratories and homeworks emphasize practical application
 - Should be performed independently by students.
 - Require Netscape, Acrobat, Matlab, and ANSI C compiler.

4. Old exams can be used to prepare for exams
 - Will not be collected
 - Solutions are posted, but you should work the problems first.
Overview of Laboratories Assignments

1. Image Filtering
2. 2-D Random Processes
3. Neighborhoods and Connected Components
4. Pointwise Operations and Gamma
5. Introduction to Colorimetry
6. Image Restoration
7. Image Halftoning
8. JPEG Image Coding
What is Image Processing?

• It is more than 2-D signal processing
• It is focused on the applications requiring the processing of “images”
• It requires a complete understanding of:
 – Physics of imaging system
 – Mathematics of imaging algorithms
 – Psychophysics of visual perception
Image Processing Applications

• Digital photography
 – Cell phone cameras: 8 mega pixel; \(\approx \$115\) (iPhone 6)
 – Point and shoot cameras: 16 mega pixel; \(\approx \$115\) (Canon A2500)
 – Single lens reflex (SLR) and portrait cameras: 36.3 mega pixel; \(\approx \$3,000 + \) lenses (Nikon D810)

• The internet
 – Real-time video
 – Image and video database
 – H.261, H.263
 – MPEG1, MPEG2, MPEG4

• Broadcast television
 – Direct satellite system (DSS) using MPEG1 and MPEG2
 – High definition television (HDTV)/digital television (DTV)

• Medical Imaging
 – Transmission tomography: Computed tomography (CT)
 – Emission tomography: Positron emission tomography (PET), and single photon emission tomography (SPECT)
– Magnetic resonance imaging (MRI), and functional MRI (fMRI)
– Ultrasound
– Optical and spectroscopic Imaging

• Remote sensing
 – Multispectral ($<< 100$ bands) and hyperspectral imaging ($>> 100$ bands)
 – Synthetic aperture radar (SAR)

• Automation
 – Optical character recognition (OCR)
 – Manufacturing and industrial inspection