Introduction to EE637 Digital Image Processing I

• Prerequisites:

- EE301 Undergraduate signals and systems
- EE302 Undergraduate probability

• Course Objectives:

- Learn analytical methods of image and 2-D signal processing.
- Learn techniques commonly used in image processing.
- Develop experience in using computers to process images.

• Course Text (optional):

- Al Bovik editor, *Handbook of Image & Video Processing*, Academic Press, San Diego.
- Supplementary references:
 - A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989.
 - A. Rosenfeld and A. Kak, "Digital Picture Processing," volume 1, Academic Press, 1982.

Course Structure

- 1. Course web page
 - http://www.ece.purdue.edu/~bouman/ee637
 - Contains class notes, laboratories, homeworks, and exams
- 2. Lectures emphasize topical coverage
 - Print out course notes **before** lecture
 - Lectures cover details of analytical methods
- 3. Laboratories and homeworks emphasize practical application
 - Should be performed **independently** by students.
 - Require Netscape, Acrobat, Matlab, and ANSI C compiler.
- 4. Old exams can be used to prepare for prepare for exams
 - Will not be collected
 - Solutions are posted, but you should work the problems first.

Overview of Laboratories Assignments

- 1. Image Filtering
- 2. 2-D Random Processes
- 3. Neighborhoods and Connected Components
- 4. Pointwise Operations and Gamma
- 5. Introduction to Colorimetry
- 6. Image Restoration
- 7. Image Halftoning
- 8. JPEG Image Coding

What is Image Processing?

- It is more than 2-D signal processing
- It is focused on the applications requiring the processing of "images"
- It requires a complete understanding of:
 - Physics of imaging system
 - Mathematics of imaging algorithms
 - Psychophysics of visual perception

Image Processing Applications

- Digital photography
 - Cell phone cameras: 12 mega pixel in iPhone 14
 - Single lens reflex (SLR) and portrait cameras: 36.3 mega pixel; \approx \$800 + lenses (Nikon D810)
- The internet
 - Real-time video
 - Image and video database
 - H.261,H.263
 - MPEG1, MPEG2, MPEG4
- Medical Imaging
 - Transmission tomography: Computed tomography (CT)
 - Emission tomography: Positron emission tomography
 (PET), and single photon emission tomography (SPECT)
 - Magnetic resonance imaging (MRI), and functional MRI (fMRI)
 - Ultrasound
 - Optical and spectroscopic Imaging
- Consumer Imaging
 - Night mode in Samsung Galaxy and Apple iPhone

- Color balance and enhancement
- Through-the-screen fingerprint detection
- Scientific imaging
 - Nano-scale synchrotron imaging (ptychography)
 - Electron microscopy
 - Hyperspectal remote sensing
- Industrial Imaging
 - Manufacturing and industrial inspection (KLA Tencor)
 - Inspection for 3D additive manufacturing