Digital Halftoning

- Many image rendering technologies only have binary output. For example, printers can either “fire a dot” or not.
- Halftoning is a method for creating the illusion of continuous tone output with a binary device.
- Effective digital halftoning can substantially improve the quality of rendered images at minimal cost.
Thresholding

- Assume that the image falls in the range of 0 to 255.
- Apply a space varying threshold, $T(i, j)$.

$$b(i, j) = \begin{cases}
255 & \text{if } X(i, j) > T(i, j) \\
0 & \text{otherwise}
\end{cases}$$

- What is $X(i, j)$?
- Lightness
 - Larger \Rightarrow lighter
 - Used for display
- Absorptance
 - Larger \Rightarrow darker
 - Used for printing
- $X(i, j)$ will generally be in units of absorptance.
Constant Threshold

• Assume that the image falls in the range of 0 to 255.

• $255 \Rightarrow Black$ and $0 \Rightarrow White$

• The minimum squared error quantizer is a simple threshold

$$b(i, j) = \begin{cases}
255 & \text{if } X(i, j) > T \\
0 & \text{otherwise}
\end{cases}$$

where $T = 127$.

• This produces a poor quality rendering of a continuous tone image.
The Minimum Squared Error Solution

- Threshold each pixel
 - Pixel > 127 Fire ink
 - Pixel ≤ 127 do nothing
Ordered Dither

- For a constant gray level patch, turn the pixel “on” in a specified order.
- This creates the perception of continuous variations of gray.
- An $N \times N$ index matrix specifies what order to use.

$$I_2(i, j) = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

- Pixels are turned on in the following order.
Implementation of Ordered Dither via Thresholding

• The index matrix can be converted to a “threshold matrix” or “screen” using the following operation.

\[T(i, j) = 255 \frac{I(i, j) + 0.5}{N^2} \]

• The \(N \times N \) matrix can then be “tiled” over the image using periodic replication.

\[T(i \mod N, j \mod N) \]

• The ordered dither algorithm is then applied via thresholding.

\[b(i, j) = \begin{cases} 255 & \text{if } X(i, j) > T(i \mod N, j \mod N) \\ 0 & \text{otherwise} \end{cases} \]
Clustered Dot Screens

• Definition: If the consecutive thresholds are located in spatial proximity, then this is called a “clustered dot screen.

• Example for 8×8 matrix:

\[
\begin{array}{cccccccc}
62 & 57 & 48 & 36 & 37 & 49 & 58 & 63 \\
56 & 47 & 35 & 21 & 22 & 38 & 50 & 59 \\
46 & 34 & 20 & 10 & 11 & 23 & 39 & 51 \\
33 & 19 & 9 & 3 & 0 & 4 & 12 & 24 \\
32 & 18 & 8 & 2 & 1 & 5 & 13 & 25 \\
45 & 31 & 17 & 7 & 6 & 14 & 26 & 40 \\
55 & 44 & 30 & 16 & 15 & 27 & 41 & 52 \\
61 & 54 & 43 & 29 & 28 & 42 & 53 & 60
\end{array}
\]
Example: 8×8 Clustered Dot Screening

• Only supports 65 gray levels.
Example: 16×16 Clustered Dot Screening

- Support a full 257 gray levels, but has half the resolution.
Properties of Clustered Dot Screens

- Requires a trade-off between number of gray levels and resolution.
- Relatively visible texture
- Relatively poor detail rendition
- Uniform texture across entire gray scale.
- Robust performance with non-ideal output devices
 - Non-additive spot overlap
 - Spot-to-spot variability
 - Noise
Dispersed Dot Screens

- Bayer’s optimum index Matrix (1973) can be defined recursively.

\[
I_2(i, j) = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}
\]

\[
I_{2n} = \begin{bmatrix} 4 \times I_n + 1 & 4 \times I_n + 2 \\ 4 \times I_n + 3 & 4 \times I_n \end{bmatrix}
\]

- Examples

\[
\begin{array}{cccccccc}
21 & 37 & 25 & 41 & 22 & 38 & 26 & 42 \\
53 & 5 & 57 & 9 & 54 & 6 & 58 & 10 \\
29 & 45 & 17 & 33 & 30 & 46 & 18 & 34 \\
61 & 13 & 49 & 1 & 62 & 14 & 50 & 2 \\
23 & 39 & 27 & 43 & 20 & 36 & 24 & 40 \\
55 & 7 & 59 & 11 & 52 & 4 & 56 & 8 \\
31 & 47 & 19 & 35 & 28 & 44 & 16 & 32 \\
63 & 15 & 51 & 3 & 60 & 12 & 48 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 \\
3 & 0 \\
5 & 9 & 6 & 10 \\
13 & 1 & 14 & 2 \\
7 & 11 & 4 & 8 \\
15 & 3 & 12 & 0 \\
\end{array}
\]

\[
2 \times 2 \quad 4 \times 4 \quad 8 \times 8
\]

- Yields finer amplitude quantization over larger area.
- Retains good detail rendition within smaller area.
Example: 8×8 Bayer Dot Screening

- Again, only 65 gray levels.
Example: 16×16 Bayer Dot Screening

- Doesn’t look much different than the 8×8 case.
- No trade-off between resolution and number of gray levels.
Example: 128×128 Void and Cluster Screen (1989)

- Substantially improved quality over Bayer screen.
Properties of Dispersed Dot Screens

• Eliminate the trade-off between number of gray levels and resolution.

• Within any region containing K dots, the K thresholds should be distributed as uniformly as possible.

• Textures used to represent individual gray levels have low visibility.

• Improved detail rendition.

• Transitions between textures corresponding to different gray levels may be more visible.

• Not robust to non-ideal output devices
 – Requires stable formation of isolated single dots.
Error Diffusion

- Error Diffusion
 - Quantizes each pixel using a neighborhood operation, rather than a simple pointwise operation.
 - Moves through image in raster order, quantizing the result, and “pushing” the error forward.
 - Can produce better quality images than is possible with screens.
Filter View of Error Diffusion

\[f(i, j) \rightarrow \tilde{f}(i, j) \rightarrow b(i, j) \]

• Equations are

\[
\begin{align*}
b(i, j) &= \begin{cases} 255 & \text{if } \tilde{f}(i, j) > T \\ 0 & \text{otherwise} \end{cases} \\
e(i, j) &= \tilde{f}(i, j) - b(i, j) \\
\tilde{f}(i, j) &= f(i, j) + \sum_{k,l\in S} h(k, l) e(i - k, j - l)
\end{align*}
\]

• Parameters
 – Threshold is typically \(T = 127 \).
 – \(h(k, l) \) are typically chosen to be positive and sum to 1
1-D Error Diffusion Example

- $\tilde{f}(i) \Rightarrow$ circles
- $b(i) \Rightarrow$ boxes
Two Views of Error Diffusion

- Two mathematically equivalent views of error diffusion
 - Pulling errors forward
 - Pushing errors ahead

- Pulling errors forward
 - More similar to common view of IIR filter
 - Has advantages for analysis

- Pushing errors ahead
 - Original view of error diffusion
 - Can be more easily extended to important cases when weights are time/space varying
ED: Pulling Errors Forward

1. For each pixel in the image (in raster order)
 (a) Pull error forward
 \[
 \tilde{f}(i, j) = f(i, j) + \sum_{k,l \in S} h(k, l) e(i - k, j - l)
 \]
 (b) Compute binary output
 \[
 b(i, j) = \begin{cases}
 255 & \text{if } \tilde{f}(i, j) > T \\
 0 & \text{otherwise}
 \end{cases}
 \]
 (c) Compute pixel’s error
 \[
 e(i, j) = \tilde{f}(i, j) - b(i, j)
 \]

2. Display binary image \(b(i, j) \)
ED: Pushing Errors Ahead

1. Initialize $\tilde{f}(i, j) \leftarrow f(i, j)$

2. For each pixel in the image (in raster order)
 (a) Compute

 \[b(i, j) = \begin{cases}
 255 & \text{if } \tilde{f}(i, j) > T \\
 0 & \text{otherwise}
 \end{cases} \]

 (b) Diffuse error forward using the following scheme

 \[e = \tilde{f}(i, j) - b(i, j) \]

 \[\tilde{f}(i + 1, j) = \tilde{f}(i + 1, j) + h(0, 1) \times e \]

 \[\tilde{f}(i + 1, j - 1) = \tilde{f}(i + 1, j - 1) + h(1, -1) \times e \]

 \[\tilde{f}(i + 1, j + 1) = \tilde{f}(i + 1, j + 1) + h(1, 1) \times e \]

3. Display binary image $b(i, j)$
Commonly Used Error Diffusion Weights

- Floyd and Steinberg (1976)

- Jarvis, Judice, and Ninke (1976)
Floyd Steinberg Error Diffusion (1976)

- Process pixels in neighborhoods by “diffusing error” and quantizing.
Quantization Error Modeling for Error Diffusion

- Quantization error is commonly assumed to be:
 - Uniformly distributed on $[-0.5, 0.5]$
 - Uncorrelated in space
 - Independent of signal $\tilde{f}(i, j)$
 - $E[e(i, j)] = 0$
 - $E[e(i, j)e(i + k, j + l)] = \frac{\delta(k,l)}{12}$
Modified Error Diffusion Block Diagram

- The error diffusion block diagram can be rearranged to facilitate error analysis.
Error Diffusion Spectral Analysis

• So we see that

\[b(i, j) = f(i, j) - (\delta(i, j) - h(i, j)) * e(i, j) \]

rewriting ...

\[f(i, j) - b(i, j) = (\delta(i, j) - h(i, j)) \ast e(i, j) \]

– Display error is \(f(i, j) - b(i, j) \)
– Quantization error is \(e(i, j) \)
– Display error is a high pass version of quantization error
– Human visual system is less sensitive to high spatial frequencies
Error Image in Floyd Steinberg Error Diffusion

- Process pixels in neighborhoods by “diffusing error” and quantizing.
Correlation of Quantization Error and Image

- Quantizer error spectrum is unknown
- Quantizer error model

\[E(\mu, \nu) = \rho F(\mu, \nu) + R(\mu, \nu) \]
\[= \rho (\text{Image}) + (\text{Residual}) \]

- \(\rho \) represents correlation between quantizer error and image

<table>
<thead>
<tr>
<th>Weight</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td>0.0</td>
</tr>
<tr>
<td>Floyd and Steinberg</td>
<td>0.55</td>
</tr>
<tr>
<td>Jarvis, Judice, and Ninke</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- Using this model, we have

\[B(\mu, \nu) = F(\mu, \nu) - (1 - H(\mu, \nu)) E(\mu, \nu) \]

\[= [1 - \rho (1 - H(\mu, \nu))] F(\mu, \nu) + \text{noise} \]

- This is unsharp masking
Additional Topics

• Pattern Printing

• Dot Profiles

• Halftone quality metrics
 – Radially averaged power spectrum (RAPS)
 – Weighted least squares with HVS contrast sensitivity function
 – Blue noise dot patterns

• Error diffusion
 – Unsharp masking effects
 – Serpentine scan patterns
 – Threshold dithering
 – TDED

• Least squared halftoning

• Printing and display technologies
 – Electrophotographic
 – Inkjet