## 2-D Finite Impulse Response (FIR) Filters

## • Difference equation

$$y(m,n) = \sum_{k=-N}^{N} \sum_{l=-N}^{N} h(k,l) x(m-k,n-l)$$

• For  $N = 2 - \circ$  input points;  $\times$  output point

| 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | Х | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

• Number of multiplies per output point

$$Multiplies = (2N+1)^2$$

• Transfer function

$$H(z_1, z_2) = \sum_{k=-N}^{N} \sum_{l=-N}^{N} h(k, l) z_1^{-k} z_2^{-l}$$
$$H(e^{j\mu}, e^{j\nu}) = \sum_{k=-N}^{N} \sum_{l=-N}^{N} h(k, l) e^{-j(k\mu + l\nu)}$$

## **Spatial FIR Smoothing Filtering**

• Filter point spread function (PSF) or impulse response: The box, X, indicates the center element of the filter.

• Apply filter using free boundary condition: Assume that pixels outside the image are 0.

| Input Image |   |   |    |    |    |    |               |   | ( | Dut | put | Im | age |    |
|-------------|---|---|----|----|----|----|---------------|---|---|-----|-----|----|-----|----|
| 0           | 0 | 0 | 16 | 16 | 16 | 16 | ,             | 0 | 0 | 3   | 9   | 12 | 12  | 9  |
| 0           | 0 | 0 | 16 | 16 | 16 | 16 |               | 0 | 0 | 4   | 12  | 16 | 16  | 12 |
| 0           | 0 | 0 | 16 | 16 | 16 | 16 |               | 0 | 0 | 4   | 12  | 16 | 16  | 12 |
| 0           | 0 | 0 | 16 | 16 | 16 | 16 | $\Rightarrow$ | 0 | 0 | 3   | 9   | 12 | 12  | 9  |
| 0           | 0 | 0 | 0  | 0  | 0  | 0  |               | 0 | 0 | 1   | 3   | 4  | 4   | 3  |
| 0           | 0 | 0 | 0  | 0  | 0  | 0  |               | 0 | 0 | 0   | 0   | 0  | 0   | 0  |
| 0           | 0 | 0 | 0  | 0  | 0  | 0  |               | 0 | 0 | 0   | 0   | 0  | 0   | 0  |

# **PSF for FIR Smoothing Filter**



### **Spatial FIR Horizontal Derivative Filtering**

• Filter point spread function (PSF) or impulse response: The box, X, indicates the center element of the filter.

• Apply filter using free boundary condition: Assume that pixels outside the image are 0.

| Input Image |   |   |    |    |    |    |               |   | Οι | ıtp | ut | In | nag | ge |
|-------------|---|---|----|----|----|----|---------------|---|----|-----|----|----|-----|----|
| 0           | 0 | 0 | 16 | 16 | 16 | 16 | ,             | 0 | 0  | 6   | 6  | 0  | 0   | -6 |
| 0           | 0 | 0 | 16 | 16 | 16 | 16 |               | 0 | 0  | 8   | 8  | 0  | 0   | -8 |
| 0           | 0 | 0 | 16 | 16 | 16 | 16 |               | 0 | 0  | 8   | 8  | 0  | 0   | -8 |
| 0           | 0 | 0 | 16 | 16 | 16 | 16 | $\Rightarrow$ | 0 | 0  | 6   | 6  | 0  | 0   | -6 |
| 0           | 0 | 0 | 0  | 0  | 0  | 0  |               | 0 | 0  | 2   | 2  | 0  | 0   | -2 |
| 0           | 0 | 0 | 0  | 0  | 0  | 0  |               | 0 | 0  | 0   | 0  | 0  | 0   | 0  |
| 0           | 0 | 0 | 0  | 0  | 0  | 0  |               | 0 | 0  | 0   | 0  | 0  | 0   | 0  |

# **PSF of FIR Horizontal Derivative Filter**

#### **Spatial FIR Vertical Derivative Filtering**

• Filter point spread function (PSF) or impulse response: The box, X, indicates the center element of the filter.

• Apply filter using free boundary condition: Assume that pixels outside the image are 0.



# **PSF of FIR Vertical Derivative Filter**

### **Example 1: 2-D FIR Filter**

• Consider the impulse response  $h(m, n) = h_1(m)h_1(n)$  where

$$4h_1(n) = (\cdots, 0, 1, 2, 1, 0, \cdots)$$
  

$$h_1(n) = (\delta(n+1) + 2\delta(n) + \delta(n-1))/4$$

Then h(m, n) is a separable function with

• The DTFT of  $h_1(n)$  is

$$H_1(e^{j\omega}) = \frac{1}{4} \left( e^{j\omega} + 2 + e^{-j\omega} \right)$$
$$= \frac{1}{2} \left( 1 + \cos(\omega) \right)$$

• The DSFT of h(m, n) is

$$H(e^{j\mu}, e^{j\nu}) = H_1(e^{j\mu})H_1(e^{j\nu})$$
  
=  $\frac{1}{4}(1 + \cos(\mu))(1 + \cos(\nu))$ 

## **Example 1: Frequency Response of 2-D FIR Filter**

• Plot of frequency response

$$H(e^{j\mu}, e^{j\nu}) = \frac{1}{4} \left( 1 + \cos(\mu) \right) \left( 1 + \cos(\nu) \right)$$



• This is a low pass filter with  $H(e^{j0}, e^{j0}) = 1$ 

## **Example 2: 2-D FIR Filter**

• Consider the impulse response  $h(m, n) = h_1(m)h_1(n)$  where

$$4h_1(n) = (\cdots, 0, 1, -2, 1, 0, \cdots)$$
  

$$h_1(n) = (\delta(n+1) - 2\delta(n) + \delta(n-1))/4$$

Then h(m, n) is a separable function with

• The DTFT of  $h_1(n)$  is

$$H_1(e^{j\omega}) = \frac{1}{4} \left( e^{j\omega} - 2 + e^{-j\omega} \right)$$
$$= -\frac{1}{2} \left( 1 - \cos(\omega) \right)$$

• The DSFT of h(m, n) is

$$H(e^{j\mu}, e^{j\nu}) = H_1(e^{j\mu})H_1(e^{j\nu})$$
  
=  $\frac{1}{4}(1 - \cos(\mu))(1 - \cos(\nu))$ 

## **Example 2: Frequency Response of 2-D FIR Filter**

• Plot of frequency response

$$H(e^{j\mu}, e^{j\nu}) = \frac{1}{4} \left(1 - \cos(\mu)\right) \left(1 - \cos(\nu)\right)$$



• This is a high pass filter with  $H(e^{j0}, e^{j0}) = 0$ 

#### **Ordering of Points in a Plane**

- Recursive filter implementations require the ordering of points in the plane.
- Let  $s = (s_1, s_2) \in \mathbb{Z}^2$  and  $r = (r_1, r_2) \in \mathbb{Z}^2$ .
- Quarter plane then s < r means:

$$(s_2 < r_2) \text{ and } (s_1 < r_1) \text{ and } s \neq r$$
$$\circ \circ \circ$$
$$\circ \circ \circ$$
$$\circ \circ \times$$

• Symmetric half plane - then s < r means:

```
(s_2 < r_2)
\circ \circ \circ \circ \circ
\circ \circ \circ \circ \circ
\times
```

• Nonsymmetric half plane - then s < r means:

$$(s_2 < r_2)$$
 or  $((s_2 = r_2)$  and  $(s_1 < r_1))$   
 $\circ \circ \circ \circ \circ \circ$   
 $\circ \circ \circ \circ \circ \circ$   
 $\circ \circ \circ \times$ 

## 2-D Infinite Impulse Response (IIR) Filters

• Difference equation

$$y(m,n) = \sum_{k=-N}^{N} \sum_{l=-N}^{N} b(k,l)x(m-k,n-l) + \sum_{k=-P}^{P} \sum_{l=1}^{P} a(k,l)y(m-k,n-l) + \sum_{k=1}^{P} a(k,0)y(m-k,n)$$

Simplified notation

$$y_s = \sum_r b_r x_{s-r} + \sum_{r > (0,0)} a_r y_{s-r}$$

- For nonsymetric half plane with N = 0 and P = 2
  - 0
     0
     0
     0

     0
     0
     0
     0
     0

     0
     0
     X
     V
- Number of multiplies per output point

Multiplies = 
$$\underbrace{(2N+1)^2}_{\text{FIR Part}} + \underbrace{2(P+1)P}_{\text{IIR Part}}$$

## **2-D IIR Filter Transfer Functions**

• Transfer function in Z-transform domain is

$$H(z_1, z_2) = \frac{\sum_{k=-N}^{N} \sum_{l=-N}^{N} b(k, l) z_1^{-k} z_2^{-l}}{1 - \sum_{k=-P}^{P} \sum_{l=1}^{P} a(k, l) z_1^{-k} z_2^{-l} - \sum_{k=1}^{P} a(k, 0) z_1^{-k}}$$

• Transfer function in DSFT domain is

$$\begin{aligned} H(e^{j\mu}, e^{j\nu}) &= \\ \frac{\sum_{k=-N}^{N} \sum_{l=-N}^{N} b(k, l) e^{-j(k\mu + l\nu)}}{1 - \sum_{k=-P}^{P} \sum_{l=1}^{P} a(k, l) e^{-j(k\mu + l\nu)} - \sum_{k=1}^{P} a(k, 0) e^{-j(k\mu)}} \end{aligned}$$

### **Example 3: 2-D IIR Filter**

• Consider the difference equation

$$y(m,n)=x(m,n)+ay(m-1,n)+ay(m,n-1)$$

• Spatial dependencies -  $\circ$  previous value;  $\times$  curent value

0 0 X

• Taking the Z-transform of the difference equation

$$Y(z_1, z_2) = X(z_1, z_2) + az_1^{-1}Y(z_1, z_2) + az_2^{-1}Y(z_1, z_2)$$

The transfer functions is then

$$H(z_1, z_2) = \frac{Y(z_1, z_2)}{X(z_1, z_2)} = \frac{1}{1 - az_1^{-1} - az_2^{-1}}$$
$$H(e^{j\mu}, e^{j\nu}) = \frac{1}{1 - ae^{-j\mu} - ae^{-j\nu}}$$

# **Example 3: 2-D IIR Filter in Space Domain**

• For a = 1/2

$$y(m,n) = x(m,n) + \frac{1}{2}y(m-1,n) + \frac{1}{2}y(m,n-1)$$

• Looks like

$$\begin{array}{c} 1/2\\ 1/2 \quad \times \end{array}$$

• Apply filter in raster scan order.

|   | Input Image |   |    |   |   |   |               |   |   | Output Image |    |    |    |    |  |  |  |
|---|-------------|---|----|---|---|---|---------------|---|---|--------------|----|----|----|----|--|--|--|
| 0 | 0           | 0 | 0  | 0 | 0 | 0 | ,             | 0 | 0 | 0            | 8  | 16 | 20 | 20 |  |  |  |
| 0 | 0           | 0 | 0  | 0 | 0 | 0 |               | 0 | 0 | 0            | 16 | 24 | 24 | 20 |  |  |  |
| 0 | 0           | 0 | 0  | 0 | 0 | 0 |               | 0 | 0 | 0            | 32 | 32 | 24 | 16 |  |  |  |
| 0 | 0           | 0 | 64 | 0 | 0 | 0 | $\Rightarrow$ | 0 | 0 | 0            | 64 | 32 | 16 | 8  |  |  |  |
| 0 | 0           | 0 | 0  | 0 | 0 | 0 |               | 0 | 0 | 0            | 0  | 0  | 0  | 0  |  |  |  |
| 0 | 0           | 0 | 0  | 0 | 0 | 0 |               | 0 | 0 | 0            | 0  | 0  | 0  | 0  |  |  |  |
| 0 | 0           | 0 | 0  | 0 | 0 | 0 |               | 0 | 0 | 0            | 0  | 0  | 0  | 0  |  |  |  |

# **Example 3: Frequency Response of 2-D IIR Filter**

# • Plot of frequency response

$$H(z_1, z_2) = \frac{1}{1 - az_1^{-1} - az_2^{-1}}$$

for a = 0.4.



## Example 4: 2-D IIR Filter

• Consider the difference equation

$$\begin{array}{ll} y(m,n) \ = \ x(m,n) + ay(m-1,n) + ay(m,n-1) \\ + 2ay(m+1,n-1) \end{array}$$

• Spatial dependencies -  $\circ$  previous value;  $\times$  curent value

0

• The transfer functions is then

$$H(z_1, z_2) = \frac{1}{1 - az_1^{-1} - az_2^{-1} - 2az_1^{+1}z_2^{-1}}$$
$$H(e^{j\mu}, e^{j\nu}) = \frac{1}{1 - ae^{-j\mu} - ae^{-j\mu} - 2ae^{+j\mu - j\nu}}$$

# **Example 4: 2-D IIR Filter in Space Domain**

• For a = 1/4

$$\begin{split} y(m,n) \ = \ x(m,n) + \frac{1}{4}y(m-1,n) + \frac{1}{4}y(m,n-1) \\ + \frac{1}{2}y(m+1,n-1) \end{split}$$

• Looks like

$$\begin{array}{ccc} 1/4 & 1/2 \\ 1/4 & \times \end{array}$$

• Apply filter in raster scan order.

| Input Image        |   |   |    |   |   |                 | Output Image |    |    |    |                 |                |                 |  |
|--------------------|---|---|----|---|---|-----------------|--------------|----|----|----|-----------------|----------------|-----------------|--|
| $\underbrace{0}{}$ | 0 | 0 | 0  | 0 | 0 | 0               | 0            | 16 | 28 | 22 | $11\frac{1}{2}$ | $4\frac{7}{8}$ | $\frac{45}{32}$ |  |
| 0                  | 0 | 0 | 0  | 0 | 0 | 0               | 0            | 0  | 32 | 32 | 14              | 5              | $1\frac{1}{2}$  |  |
| 0                  | 0 | 0 | 64 | 0 | 0 | $0 \Rightarrow$ | 0            | 0  | 0  | 64 | 16              | 4              | 1               |  |
| 0                  | 0 | 0 | 0  | 0 | 0 | $0 \rightarrow$ | 0            | 0  | 0  | 0  | 0               | 0              | 0               |  |
| 0                  | 0 | 0 | 0  | 0 | 0 | 0               | 0            | 0  | 0  | 0  | 0               | 0              | 0               |  |
| 0                  | 0 | 0 | 0  | 0 | 0 | 0               | 0            | 0  | 0  | 0  | 0               | 0              | 0               |  |

## **Example 4: Frequency Response of 2-D IIR Filter**

• Plot of frequency response

$$H(z_1, z_2) = \frac{1}{1 - az_1^{-1} - az_2^{-1} - 2az_1z_2^{-1}}$$

for a = 0.2.



• Notice that transfer function has a diagonal orientation.

## **Example 5: 2-D IIR Filter**

• Consider the difference equation

$$\begin{array}{ll} y(m,n) \ = \ x(m,n) + ay(m-1,n) + ay(m,n-1) \\ & + ay(m+1,n) + ay(m,n+1) \end{array}$$

• Spatial dependencies -  $\circ$  previous value;  $\times$  curent value

• Theoretically, the transfer functions is then

$$H(z_1, z_1) = \frac{1}{1 - az_1^{-1} - az_2^{-1} - az_1 - az_2}$$
$$H(e^{j\mu}, e^{j\nu}) = \frac{1}{1 - ae^{-j\mu} - ae^{-j\mu} - ae^{j\mu} - ae^{j\nu}}$$

• THIS DOESN'T WORK