

EE 641 DIGITAL IMAGE PROCESSING II
 Assignment #5 - Spring 1996
 Monday March 12, 1996

Problem 1.

$\{X_n\}_{n=-\infty}^{\infty}$ is a 1st order GMRF with zero mean and autocorrelation

$$E[X_n X_{n+k}] = r_k.$$

Compute $E[X_n | X_i \neq n]$ and $VAR[X_n | X_i \neq n]$ in terms of r_k .

Problem 2.

Let $\{X_n\}_{n=-\infty}^{\infty}$ be a 1st order zero mean Gaussian AR Process parameterized by the prediction variance σ_c^2 and prediction filter h .

a) Compute the density functions $p(x_2, \dots, x_N | x_1)$ and $p(x_1, \dots, x_N)$.

b) Assume that σ_c^2 is known and compute

$$\hat{h} = \arg \max_h p_h(x_2, \dots, x_N | x_1).$$

Problem 3.

Let $\{X_n\}_{n=1}^N$ be a homogeneous discrete valued Markov chain with

$$X_n \in \{1, \dots, M\}$$

transition matrix

$$P_{i,j} = P\{X_n = j | X_{n-1} = i\}$$

and initial distribution

$$P\{X_1 = i\} = 1/M.$$

Use the density function for $\{X_n\}_{n=1}^N$ and the fact that

$$P_{i,i} = 1 - \sum_{j \neq i} P_{i,j}$$

to compute the ML estimate of all components $P_{i,j}$ for $i \neq j$.

Problem 4.

Let X be a Ising model with each $X_s \in \{-1, 1\}$. Let N be zero mean white Gaussian noise with variance σ^2 , and let Y be an observed image

$$Y = X + N.$$

a) Compute an expression for the MAP estimate of X given Y .

b) Give any algorithm for the approximate computation of the MAP estimate. Be specific.

Problem 5.

Let $\{X_n\}_{n=1}^N$ be a 1D discrete valued MRF with neighborhood system

$$\partial n = \{n - 1, n + 1\} \cap \{1, \dots, N\}$$

and strictly positive distribution. Prove that $\{X_n\}_{n=1}^N$ is also a Markov Chain.