

EE 641 DIGITAL IMAGE PROCESSING II
 Assignment #1 - Spring 1996
 January 25, 1996

1) Let $\{x_i\}_{i=1}^N$ be iid RV's with distribution

$$\begin{aligned} P(x_i = 1) &= \theta \\ P(x_i = 0) &= 1 - \theta \end{aligned}$$

Compute the ML estimate of θ .

2) Let X , N , and Y be Gaussian random vectors such that $X \sim N(0, R_x)$ and $N \sim N(0, R_n)$, and let θ be a deterministic vector.

- a) Compute the ML estimate of θ when $Y = \theta + N$.
- b) Compute the MSEE estimate of X when $Y = X + N$.

3) Let Y be a 1-D AR process with $h_n = \rho \delta_{n-1}$ and σ^2 prediction variance.

- a) Analytically calculate $S_y(\omega)$ (the power of Y) and $R_y(n)$ (the autocorrelation function for Y).

a) Plot $S_y(\omega)$ and $R_y(n)$ for $\rho = 0.5$ and $\rho = 0.95$.

4) Let Y_n be samples of an AR process with order p and parameters (σ^2, h) . Also make the assumption that $Y_n = 0$ for $n \leq 0$ as we did in class.

- a) Use matlab to generate 100 samples of Y . Experiment with a variety of values for p and (σ^2, h) . Plot your output for each experiment.
- b) Use your sample values of Y generated in part a) to compute the ML estimates of the (σ^2, h) , and compare them to the true values.

6) You are at dinner, and you overhear a student from the University of Illinois say that if X , Y , and Z are independent Gaussian random variables that are pairwise independent, then X is independent of the vector (Y, Z) . Either prove this statement or give a counter example.