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Name/PUID: Key
Problem 1.(30pt) ICD update

Our goal is to minimize the MAP cost function

f(x) =

⇢
1

2
ky �Axk2 + 1

2
x
t
Bx

�
,

by performing the line search given by

↵
⇤ = argmin

↵
{f(x+ ↵d)} ,

where d is the direction.

Problem 1a) For gradient descent optimization, give an expression for d.

Problem 1b) For gradient descent optimization, derive an expression for ↵⇤?

Problem 1c) For coordinate descent optimization, give an expression for d.

Problem 1d) For coordinate descent optimization, derive an expression for ↵⇤?

Problem 1e) Give a condition on d that ensures that ↵⇤ � 0.

Solution:

Q1a:

d = �rf(x) = A
t(y �Ax)�Bx

Q1b:

0 =
df(x+ ↵d)

d↵

= d
t [rf(x+ ↵d)]

= d
t
⇥
(�A)t(y �A(x+ ↵d)) +B(x+ ↵d)

⇤

= d
t
⇥
A

t
A(x+ ↵d)�A

t
y +B(x+ ↵d)

⇤

= d
t
A

t
Ax+ ↵d

t
A

t
Ad� d

t
A

t
y + d

t
Bx+ ↵d

t
Bd

= ↵d
t
A

t
Ad+ ↵d

t
Bd+ d

t
A

t
Ax� d

t
A

t
y + d

t
Bx

= ↵
⇥
d
t
A

t
Ad+ d

t
Bd

⇤
� d

t
A

t(y �Ax) + d
t
Bx

= ↵d
t
⇥
A

t
A+B

⇤
d� d

t
⇥
A

t(y �Ax)�Bx
⇤

Solving for ↵⇤ results in

↵
⇤ =

d
t
⇥
A

t(y �Ax)�Bx
⇤

dt [AtA+B] d
.
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However, for the particular case of gradient descent d = A
t(y �Ax)�Bx. So we have that

↵
⇤ =

d
t
d

dt [AtA+B] d

Q1c:

d = ei

where ei 2 RN with [ei]k = �(i� k).

Q1d: From part b) we know that

↵
⇤ =

d
t
⇥
A

t(y �Ax)�Bx
⇤

dt [AtA+B] d
.

So by taking d = ei we have that

↵
⇤ =

(y �Ax)A⇤,i � x
t
B⇤,i

kA⇤,ik2 +Bi,i
.

Q1e: The condition is that

d
trf(x)  0

d
t(�rf(x)) � 0

d
t
⇥
A

t(y �Ax)�Bx
⇤
� 0

(y �Ax)tAd� x
t
Bd � 0

This ensures that ↵⇤ � 0.
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Name/PUID:

Problem 2.(48pt) Surrogate Functions

Consider the two functions

⇢(x) = |x|

fz(x) = |x� z|

g(x) =
K�1X

k=0

|x� xk|

where x, z, xk 2 R.

Problem 2a) Sketch a plot of ⇢(x).

Problem 2b) Sketch the best quadratic surrogate function, ⇢(x;x0), together with the function

⇢(x) for x0 = 1.

Problem 2c) Determine a general expression for the best quadratic surrogate function ⇢(x;x0) for

general choices of x and x
0.

Problem 2d) Sketch a plot of fz(x) when z = 1.

Problem 2e) Sketch the best quadratic surrogate function, fz(x;x0), together with the function

fz(x) for z = 1 and x
0 = 2.

Problem 2f) Determine a general expression for the best quadratic surrogate function fz(x;x0)

for general choices of x, x0, and z.

Problem 2g) Determine a general expression for the best quadratic surrogate function g(x;x0) for

general choices of x, x0, and xk.

Problem 2h) Specify an iterative algorithm in terms of the surrogate function g(x;x0) that will

converge to the global minimum of the function.

Solution:

Q2a:

! "

"
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Q2b:

!! = 1

$ !

$ !; !!

!

Q2c: When x
0 6= 0, then the surrogate function has the form

⇢(x;x0) =
⇢
0(x0)

2x0
x
2 =

1

2|x0|x
2
.

However, the surrogate function does not exist when x
0 = 0

Q2d:

!! "

"
# = 1

Q2e:

! = 1

$! %

$! %; %"

%
%" = 2
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Q2f:

First notice that

fz(x) = ⇢(x� z).

So then we know that

fz(x;x
0) = ⇢

0(x� z;x0 � z)

=
1

2|x0 � z|(x� z)2

Again, the surrogate function does not exist when x
0 � z = 0

Q2g:

First notice that

g(x) =
K�1X

k=0

fxk(x).

So then we know that

g(x;x0) =
K�1X

k=0

1

2|x0 � xk|
(x� xk)

2

Again, the surrogate function does not exist when x
0 � xk = 0 for any k.

Q2h:

x
0  0

Repeat {

x
0  argminx g(x;x0)

}
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Name/PUID:

Problem 3.(24pt) Proximal Maps

Define the cost function

fv(x) = u(x) +
1

2�2
kx� vk2,

and the associated proximal map as

F (v) = arg min
x2RN

fv(x)

where u : RN ! R [1 is a continuously di↵erentiable proper closed convex function.

Problem 3a) Provide the outline of a proof that the function fv : RN ! R [ 1 takes on a

minimum value.

(Hint: This proof is a little tricky, so you can just provide the outline of a proof. You can use the

theorem that any continuous function on a compact set (i.e., closed and bounded set) takes on its

minimum value.)

Problem 3b) Using the result of 3a above, prove that the function fv : RN ! R [1 takes on a

unique minimum?

Problem 3c) Let u(x; y) = 1
2ky �Axk2⇤ so that

F (v; y) = arg min
x2RN

⇢
1

2
ky �Axk2⇤ +

1

2�2
kx� vk2

�
.

Then show that the proximal map has the explicit form

F (v; y) = v +

✓
1

�2
I +A

t⇤A

◆�1

A
t⇤ (y �Av) .

Problem 3d) Let F (v; y) be a proximal map with the form

F (v; y) = arg min
x2RN

⇢
1

2
ky �Axk2⇤ +

1

2�2
kx� vk2

�
.

Then show that F (v;Y ) has an interpretation as the MAP estimate of X given Y under the

assumption that Y = AX + W where X and W are independent Gaussian random vectors with

X ⇠ N(v,�2
I) and W ⇠ N(0,⇤�1).

Solution:

Q3a:

1. Since u(x) is proper, we know that there 9x 2 RN s.t., fv(x) <1.

2. Then prove 9↵ 2 R such that A = {x 2 RN : fv(x)  ↵} is closed and bounded.
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3. Then by the stated theorem, we know that 9x⇤ 2 RN such that x⇤ is the global minimum of

fv on A.

4. Then show that x⇤ must be the minimum of fv on RN .

Q3b:

Since fv is strictly convex, x⇤ must be the unique minimum of fv on RN .

Q3c:

Let z = x� v. Then we need to minimize the function

f̃(z) =
1

2
ky �A(z + v)k2⇤ +

1

2�2
kzk2

=
1

2
k(y �Av)�Azk2⇤ +

1

2�2
kzk2

=
1

2
k✏�Azk2⇤ +

1

2�2
kzk2

where ✏ = y �Av.

The solution to this minimization problem is given by

z
⇤ =

✓
1

�2
I +A

t⇤A

◆�1

A
t⇤✏

=

✓
1

�2
I +A

t⇤A

◆�1

A
t⇤(y �Av).

Then since z
⇤ = x

⇤ � v, we have that

x
⇤ = z

⇤ + v

= v +

✓
1

�2
I +A

t⇤A

◆�1

A
t⇤(y �Av).

Q3d:

Consider the cost function of

f(x) =
1

2
ky �Axk2⇤ +

1

2�2
kx� vk2.

We can interpret the left-hand term as the forward model term � log p(y|x), and the right-hand

term as the prior model � log p(x).

Then the forward model has the form Y = AX +W where W ⇠ N(0,⇤�1), and the prior model

term corresponds to X ⇠ N(v,�2
I).
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ECE641 Fact Sheet

Maximum Likelihood (ML) Estimator

(Frequentist)

✓̂ = argmax
✓2⌦

p✓(Y ) = argmax
✓2⌦

log p✓(Y )

0 = r✓p✓(Y )|
✓=✓̂

✓̂ = T (Y )

✓̄ = E✓[✓̂]

bias✓ = ✓̄ � ✓ var✓ = E✓[(✓̂ � ✓̄)2]

MSE = E✓[(✓̂ � ✓)2] = var✓ + (bias✓)
2

For Y = AX +W , where X and W are independent
zero mean Gaussian distributed with RX and RW ,
respectively. Then the ML estimate is find by maxi-
mizing log(py/x(y/x)):

X̂ML = (At
R

�1
W

A)�1
A

t
R

�1
W

y

Maximum A Posteriori (MAP) Estimator

X̂MAP = argmax
x2⌦

px|y(x|Y )

= argmax
x2⌦

log px|y(x|Y )

= argmin
x2⌦

{� log py|x(y|x)� log px(x)}

For Y = AX +W , where X and W are independent
zero mean Gaussian distributed with RX and RW ,
respectively. Then the MAP or equivalently MMSE
estimate is:

X̂MAP = (At
R

�1
W

A+R
�1
X

)�1
A

t
R

�1
W

y

Power Spectral Density

(zero-mean WSS Gaussian process)

1D DTFT:

SX(ej!) =
1X

n=�1
R(n)e�j!n

2D DSFT:

SX(ej!1 , e
j!2) =

1X

m=�1

1X

n=�1
R(m,n)e�j!1m�j!2n

Causal Gaussian Models

�
2
n

�
= E[E2

n
], X̂ = HX, E = (I � H)X = AX,

E[EE t] = ⇤, ⇤ = diag{�2
1 ,�

2
2 , ...,�

2
N
}

px(x) = |det(A)|pE(Ax), |det(A)| = 1,
RX = (At⇤�1

A)�1

1-D Gaussian AR models:

• Toeplitz Hi,j = hi�j

• Circulant Hi,j = h(i�j)modN

• P
th order IIR filter Xn = En +

P
P

i=1 Xn�ihi,
RE(i� j) = E[EiEj ] = �

2
c
�i�j

• RX(n)⇤(�n�hn)⇤(�n�h�n) = RE(n) = �
2
c
�n,

SX = �
2
c

|1�H(!)|2

2-D Gaussian AR:

• Es = Xs � ⌃
r2Wp

hrXs�r,

• Toeplitz block ToeplitzHmN+k,nN+l = hm�n,k�l

Non-causal Gaussian Models

• �
2
n

�
= E[E2

n
|Xi, i 6= n], Bi,j = 1

�
2
i
(�i�j � gi,j),

�
2
n
= (Bn,n)�1, gn,i = �n�i � �

2
n
Bn,i (homoge-

neous: gi,j = gi�j ,�2
i
= �

2
NC

)

• Gi,j = gi,j , � = diag{�2
1 ,�

2
2 , ...,�

2
N
},

B = ��1(I �G), � = diag(B)�1, G = I � �B,
E[EnXn+k] = �

2
NC

�k

• RX(n) ⇤ (�n � gn) ⇤ (�n � g�n) = RE(n) =

�
2
NC

(�n � gn), SX = �
2
NC

1�G(!) , RX(n) ⇤ (�n �
gn) = �

2
NC

�n

• Relationship b/w AR and GMRF: �
2
NC

=
�
2
c

1+
PP

n=1 h2
n
,

gn = �n � (�n�hn)⇤(�n�h�n)
1+

PP
n=1 h2

n
(= ⇢

1+⇢2 (�n�1 +

�n+1), P = 1)

Surrogate Function

Our objective is to find a surrogate function ⇢(�;�0),
to the potential function ⇢(�).

Maximum Curvature Method

Assume the surrogate function of the form

⇢(�;�0) = ↵1�+
↵2

2
(���0)2

where ↵1 = ⇢
0(�0) and ↵2 = max�2R ⇢

00(�).
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Symmetric Bound Method

Assume that potential function is bounded by sym-
metric and quadratic function of �, then the surro-
gate function is

⇢(�;�0) =
↵2

2
�2

which results in the following symmetric bound sur-
rogate function:

⇢(�;�0) =

(
⇢
0(�0)
2�0 �2 if �0 6= 0
⇢
00(0)
2 �2 if �0 = 0

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A ⇢ RN , then we say that A is:

• Closed if every convergent sequence in A has
its limit in A.

• Bounded if 9M such that 8x 2 A, kxk< M .

• Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RN ! R [ {1} is closed

if for all ↵ 2 R, the sublevel set A↵ = {x 2 RN :
f(x)  ↵} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RN ! R [ {1} be a proper convex func-
tion. Then f is closed if and only if it is lower semi-
continuous.

Optimization Methods:

Gradient Descent: x
(k+1) = x

(k) � �rf(x(k))
Gradient Descent with Line Search:

d
(k) = �rf(x(k))

↵ solves the equation : 0 = @f(x(k)+↵d
(k))

@↵
= [rf(x(k)+

↵d
(k))]td(k).

Update: x
(k+1)  x

k + ↵
kd(k)k2

kd(k)k2
Q
d
(k) where Q =

A
t⇤A+B

Coordinate Descent :

↵ = (y�Ax)t⇤A⇤,s�x
t
B⇤,s

kA⇤,sk2
⇤+Bs,s

(for Y |X ⇠ N(AX,⇤�1))

xs  xs +
(y�Ax)tA⇤,s��(xs�⌃r2@sgs�rxr)

kA⇤,sk2+�
, � = �

2

�2
x

Pairwise quadratic form identity

x
t
Bx = ⌃

s2S

asx
2
s
+ 1

2 ⌃
s2S

⌃
r2S

bs,r|xs�xr|2, as = ⌃
r2S

Bs,r,

bs = �Bs,r

Miscellaneous

For any invertible matrix A, 1. @|A|
@A

= |A|A�1 2.
@tr(BA)

@A
= B 3. tr(AB) = tr(BA)
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