PURDUE

ECE 64100

Midterm Exam, November 1, Fall 2024

NAME PUID

Exam instructions:
e A fact sheet is included at the end of this exam for your use.
¢ You have 60 minutes to work the exam.
e This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any
supplementary reference, a calculator, or any communication device including a cell-phone or computer.
¢ You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:
e Write your full name and PUID above and on the top of every page.
o Answer all questions in the area designated for each problem.
o Write only on the front of the exam pages.
e DO NOT run over to the next question.




Name/PUID: Key
Problem 1.(30pt) ICD update

Our goal is to minimize the MAP cost function

1 1
) = { gl — Aol + o'Br}.
2 2
by performing the line search given by
o =argmin{f(z + ad)},

where d is the direction.

Problem 1a) For gradient descent optimization, give an expression for d.
Problem 1b) For gradient descent optimization, derive an expression for a*?
Problem 1c) For coordinate descent optimization, give an expression for d.
Problem 1d) For coordinate descent optimization, derive an expression for a*?

Problem 1e) Give a condition on d that ensures that a* > 0.

Solution:
Qla:
d=-Vf(r)=A(y — Az) — Bx
Qlb:
df (x + ad)
0= —7——+
do

d' [V f(x + ad)]
d' [(-4) (y — A(z + ad)) + B(z + ad)]
=d' [A"A(z + ad) — A'y + B(z + ad)]
= d'A'Az + ad'A'Ad — d' Aty + d'Bx + ad'Bd
=ad'A'Ad + ad'Bd + d'A'Ax — d'A'y + d'Bx
=a[d'A"Ad + d'Bd] — d'A'(y — Az) + d'Bx
=ad' [A'A+ B]d—d" [A'(y — Az) — Bz
Solving for a* results in

d' [At(y — Az) — Bz
d'[A'A+ B]d

o =




However, for the particular case of gradient descent d = A'(y — Az) — Bx. So we have that

. dd
@ T @[A'A+ Bld
Qlc:
d=¢;

where e; € RY with [e;]x = 6(i — k).

Q1d: From part b) we know that

d' [At(y — Az) — Bz
d'[A'A + B]d

o =

So by taking d = e; we have that

. (y—Ax)A; —a'By;
| Awill® + B

Q1le: The condition is that

This ensures that o™ > 0.



Name/PUID:
Problem 2.(48pt) Surrogate Functions

Consider the two functions

where x, z, x; € R.
Problem 2a) Sketch a plot of p(z).

Problem 2b) Sketch the best quadratic surrogate function, p(x;a’), together with the function
p(z) for 2/ = 1.

Problem 2c) Determine a general expression for the best quadratic surrogate function p(z;z’") for

general choices of x and 7.
Problem 2d) Sketch a plot of f,(x) when z = 1.

Problem 2e) Sketch the best quadratic surrogate function, f,(x;z’), together with the function
fz(z) for 2 =1 and 2’ = 2.

Problem 2f) Determine a general expression for the best quadratic surrogate function f,(z;z’)

for general choices of x, 2/, and z.

Problem 2g) Determine a general expression for the best quadratic surrogate function g(z; ") for

general choices of x, 2/, and xy.

Problem 2h) Specify an iterative algorithm in terms of the surrogate function g(x;z’) that will
converge to the global minimum of the function.

Solution:

Q2a:

\poc)




Q2b:

Q2c: When 2z’ # 0, then the surrogate function has the form

/ /
p(x )x2 _ 1 22
2z! 2|2/

plz; ') =

However, the surrogate function does not exist when 2’ = 0

Q2d:

Q2e:




Q2f:
First notice that

fo(x) = p(z = 2).
So then we know that
foz;2)) = pl(x — 22" — 2)
1 2
BT

Again, the surrogate function does not exist when z’ — 2z =0

Q2g:
First notice that
K—1
g(z) =)  fu ()
k=0
So then we know that
K—1 1
AN . 2
g(x7x)_22|$lfl‘k|(x l‘k)

Again, the surrogate function does not exist when ' — x = 0 for any k.

Q2h:

0

Repeat {

x’ « argmin, g(z; ')



Name/PUID:
Problem 3.(24pt) Proximal Maps

Define the cost function
1
fo(z) = u(z) + ﬁ”w —v?,

and the associated proximal map as

F(v) = arg min f,(x)
zeRN

where u : RY — R U oo is a continuously differentiable proper closed convex function.

Problem 3a) Provide the outline of a proof that the function f, : RN — R U oo takes on a
minimum value.

(Hint: This proof is a little tricky, so you can just provide the outline of a proof. You can use the
theorem that any continuous function on a compact set (i.e., closed and bounded set) takes on its

minimum value.)

Problem 3b) Using the result of 3a above, prove that the function f, : RY — R U oo takes on a

unique minimum?
Problem 3c) Let u(z;y) = 3|ly — Az||% so that
F(v;y) in {2 lly — Azl + gl — ol
;y) = arg min | — ||y — — ||z — .
viy) = arg min ¢ oy — Azly + o5 lle — v
Then show that the proximal map has the explicit form

-1
F(v;y) =v+ (121 + AtAA> A'A (y — Av) .
o

Problem 3d) Let F(v;y) be a proximal map with the form

1 1
Fluv: — . - _A 2 o 2 .
(v3y) = arg min {2 ly — Azl + 5 5llz = vll }

Then show that F'(v;Y) has an interpretation as the MAP estimate of X given Y under the
assumption that Y = AX + W where X and W are independent Gaussian random vectors with
X ~ N(v,0%I) and W ~ N(0,A71).

Solution:

Q3a:
1. Since u(x) is proper, we know that there 3z € RN s.t., f,(z) < co.

2. Then prove Ja € R such that A = {x € RV : f,(x) < a} is closed and bounded.



3. Then by the stated theorem, we know that 3z* € RV such that z* is the global minimum of
fo on A.

4. Then show that z* must be the minimum of f, on RV,

Q3b:

Since f, is strictly convex, z* must be the unique minimum of f, on RY.

Q3c:

Let 2z = £ — v. Then we need to minimize the function

1
F2) = Slly = Az + )R + 5z 21

202

1 1

= Sl — Av) — Az} + 512
1 2 1 2

= Slle— Azl + 5 l2]

where ¢ = y — Av.

The solution to this minimization problem is given by

1
P <121+AtAA> AtAe
o

1 t - t
= <021 + A AA> A*A(y — Av).
Then since z* = z* — v, we have that

f=zz"4+v

1 —1
=v 4 <2I + AtAA> AlA(y — Av).
o

Q3d:

Consider the cost function of

1
f(z) = 5”9 — Az|]3 + @”37 — %,

We can interpret the left-hand term as the forward model term —logp(y|x), and the right-hand
term as the prior model — log p(x).
Then the forward model has the form Y = AX + W where W ~ N(0,A™!), and the prior model

term corresponds to X ~ N(v,c2I).



ECE641 Fact Sheet

Maximum Likelihood (ML) Estimator pz(x) = |det(A)|pe (Ax), |det(A)| =1,
(Frequentist) Rx = (ATA71A)7!

. 1-D Gaussian AR models:
0 = argmaxpy(Y) = arg max log pe(Y)
€

0eQ e Toeplitz H; ;= hi_j
(2 = Vopo(Y)lp—g e Circulant H; j = h(;—jymoan
0= T(Y) th P
~ R o P order IIR filter X,, = &, + >, Xn_ihs,
0= ]EG[Q] Rg(l — j) = E[gzgj] = 0'02-51'—]'
biasg =60 — 6 varg = Ep[(0 — 0)?] o Rx(n)*(6p—hp)*(0n—h_pn) = Re(n) = 026,

MSE = Eg[(6 — 0)?] = vary + (biasg)? Sx = —For

For Y = AX + W, where X and W are independent
zero mean Gaussian distributed with Rx and Ry,
respectively. Then the ML estimate is find by maxi- o & =Xs— ¥ h X, o,

.. TEWP
mizing log(py/.(y/x)):

2-D Gaussian AR:

o Toeplitz block Toeplitz Hy, N4+k,nN+1 = Rm—n,k—1
Xy = (AtR‘jle)ilAtR‘jvly
Non-causal Gaussian Models
A .
o 02 S E[EXX;i # 0], Bij = %(6ij — gij),
02 = (Bn7n)717 In,i = 5n—1’ - U%Bn,i (homoge—

n

. — 2 _ 2
Neous: i j = Gi—j,0; = Onc)

Maximum A Posteriori (MAP) Estimator

Xsap = Y
MAP argglggpﬂy(x\ )

= argrﬂrcleaé(logpw‘y(ﬂY) e G, ;= gf’(j’ r :)diag{a%, 0’%, ._)_7?]2\[}7
. B=T"I-G), '=diag(B)"",G=1-TB
= arg min{— lo +(ylz) — log ps (x ’ ’ ’
gmin{—logpy|.(y|z) —logps(z)} E[E0 X 4] = 0200
For Y = AX + W, where X and W are independent o Rx(n) * (6n — gn) * (0n — g—n) = Re(n) =
. . . . 0.2
zero mean Gaussian distributed with Rx and Ry, 012\[0(571 — gn), Sx = #&)7 Rx(n) * (6, —

respectively. Then the MAP or equivalently MMSE

2
. . gn) = 0N05n
estimate is:

e Relationship b/w AR and GMRF: 0%, =
2

XMAP — (AtR;VIAﬁ’R)_(l)ilAtR;Vly o2
1+25:1 h% ’
J— (5n_h’n)*(6n_h’7’ﬂ) p—
Power Spectral Density gn = On — T+ 7 h2 (= 1fp2 (0n—1 +
(zero-mean WSS Gaussian process) Ont1), P=1)
1D DTFT:
Surrogate Function
Sy (el¥) = Z R(n)e—3wn Our objective is to find a surrogate function p(A; A'),
—— to the potential function p(A).

2D DSFT:
Maximum Curvature Method

Sx (71, e7%2) = Z Z R(m,n)e d@rm=J«2n  Assume the surrogate function of the form
p(A;A) = i A + %(A — )2
Causal Gaussian Models
o2 A E[€2, X = HX, £ = (I - H)X = AX, where ap = p/(A’) and ag = maxacg p”(A).
E[EEY = A, A = diag{0?,03,...,0%}



Symmetric Bound Method

Assume that potential function is bounded by sym-
metric and quadratic function of A, then the surro-
gate function is

p(A;A') = %AQ
which results in the following symmetric bound sur-
rogate function:
P;(AA//)AQ if A/ 7& 0
2O i A =0

p(A;A') = {

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A C RV, then we say that A is:
e Closed if every convergent sequence in A has
its limit in A.
e Bounded if 3M such that Vz € A, ||z||< M.
e Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RV — R U {oo} is closed
if for all @ € R, the sublevel set A, = {z € RY :
f(z) < a} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RY — R U {oo} be a proper convex func-
tion. Then f is closed if and only if it is lower semi-
continuous.

Optimization Methods:

Gradient Descent: z(Ft1) = z(k) — gV f((*))
Gradient Descent with Line Search:

dk) = —Vf(x(k))

a solves the equation : 0 = W = [Vf(z®+
ad®)]td*),

Update: z*+1) «— 2F + o
A'AA+ B

Coordinate Descent :

—Az)'AA, .—a'B. . B
= |\A)*,s||i+33,s = (for Y[X ~ N(AX, A7)

(yfA:r)f’A*,sz(ZDs*Zreasgsf'ﬁwr) _ o2
+ [ EE=Y A=

4]

(k) =
Hd““)\léd where @

Pairwise quadratic form identity
t 2,1 2
r'Br = Y agxi+s ¥ X be,|lrs—x as = X B
ses % 2,e5re8 sorl@s =], as res o
bs = *Bs,r

Miscellaneous

For any invertible matrix A, 1. %

9(BA) — B 3. tr(AB) = tr(BA)

= |A|A7T 2.

10



