

PURDUE

ECE 64100

Midterm Exam, November 1, Fall 2024

NAME _____

PUID _____

Exam instructions:

- A fact sheet is included **at the end of this exam** for your use.
- You have 60 minutes to work the exam.
- This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any supplementary reference, a calculator, or any communication device including a cell-phone or computer.
- You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:

- Write your full name and PUID above and on the top of every page.
- Answer all questions in the area designated for each problem.
- Write only on the front of the exam pages.
- DO NOT run over to the next question.

Name/PUID: _____ Key _____

Problem 1.(30pt) ICD update

Our goal is to minimize the MAP cost function

$$f(x) = \left\{ \frac{1}{2} \|y - Ax\|^2 + \frac{1}{2} x^t B x \right\},$$

by performing the line search given by

$$\alpha^* = \arg \min_{\alpha} \{f(x + \alpha d)\},$$

where d is the direction.

Problem 1a) For gradient descent optimization, give an expression for d .

Problem 1b) For gradient descent optimization, derive an expression for α^* ?

Problem 1c) For coordinate descent optimization, give an expression for d .

Problem 1d) For coordinate descent optimization, derive an expression for α^* ?

Problem 1e) Give a condition on d that ensures that $\alpha^* \geq 0$.

Solution:

Q1a:

$$d = -\nabla f(x) = A^t(y - Ax) - Bx$$

Q1b:

$$\begin{aligned}
0 &= \frac{df(x + \alpha d)}{d\alpha} \\
&= d^t [\nabla f(x + \alpha d)] \\
&= d^t [(-A)^t (y - A(x + \alpha d)) + B(x + \alpha d)] \\
&= d^t [A^t A(x + \alpha d) - A^t y + B(x + \alpha d)] \\
&= d^t A^t A x + \alpha d^t A^t A d - d^t A^t y + d^t B x + \alpha d^t B d \\
&= \alpha d^t A^t A d + \alpha d^t B d + d^t A^t A x - d^t A^t y + d^t B x \\
&= \alpha [d^t A^t A d + d^t B d] - d^t A^t (y - A x) + d^t B x \\
&= \alpha d^t [A^t A + B] d - d^t [A^t (y - A x) - B x]
\end{aligned}$$

Solving for α^* results in

$$\alpha^* = \frac{d^t [A^t(y - Ax) - Bx]}{d^t [A^t A + B] d}.$$

However, for the particular case of gradient descent $d = A^t(y - Ax) - Bx$. So we have that

$$\alpha^* = \frac{d^t d}{d^t [A^t A + B] d}$$

Q1c:

$$d = e_i$$

where $e_i \in \mathbb{R}^N$ with $[e_i]_k = \delta(i - k)$.

Q1d: From part b) we know that

$$\alpha^* = \frac{d^t [A^t(y - Ax) - Bx]}{d^t [A^t A + B] d}.$$

So by taking $d = e_i$ we have that

$$\alpha^* = \frac{(y - Ax) A_{*,i} - x^t B_{*,i}}{\|A_{*,i}\|^2 + B_{i,i}}.$$

Q1e: The condition is that

$$\begin{aligned} d^t \nabla f(x) &\leq 0 \\ d^t (-\nabla f(x)) &\geq 0 \\ d^t [A^t(y - Ax) - Bx] &\geq 0 \\ (y - Ax)^t A d - x^t B d &\geq 0 \end{aligned}$$

This ensures that $\alpha^* \geq 0$.

Name/PUID: _____

Problem 2.(48pt) Surrogate Functions

Consider the two functions

$$\rho(x) = |x|$$

$$f_z(x) = |x - z|$$

$$g(x) = \sum_{k=0}^{K-1} |x - x_k|$$

where $x, z, x_k \in \mathbb{R}$.

Problem 2a) Sketch a plot of $\rho(x)$.

Problem 2b) Sketch the best quadratic surrogate function, $\rho(x; x')$, together with the function $\rho(x)$ for $x' = 1$.

Problem 2c) Determine a general expression for the best quadratic surrogate function $\rho(x; x')$ for general choices of x and x' .

Problem 2d) Sketch a plot of $f_z(x)$ when $z = 1$.

Problem 2e) Sketch the best quadratic surrogate function, $f_z(x; x')$, together with the function $f_z(x)$ for $z = 1$ and $x' = 2$.

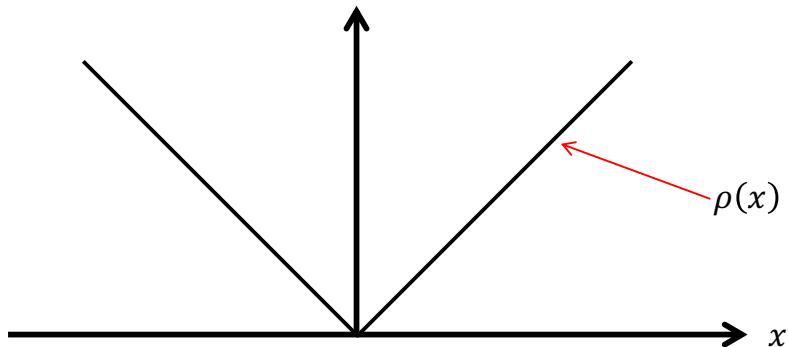
Problem 2f) Determine a general expression for the best quadratic surrogate function $f_z(x; x')$ for general choices of x , x' , and z .

Problem 2g) Determine a general expression for the best quadratic surrogate function $g(x; x')$ for general choices of x , x' , and x_k .

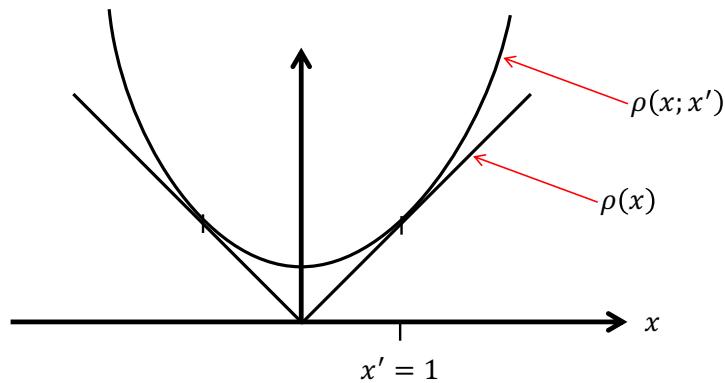
Problem 2h) Specify an iterative algorithm in terms of the surrogate function $g(x; x')$ that will converge to the global minimum of the function.

Solution:

Q2a:



Q2b:

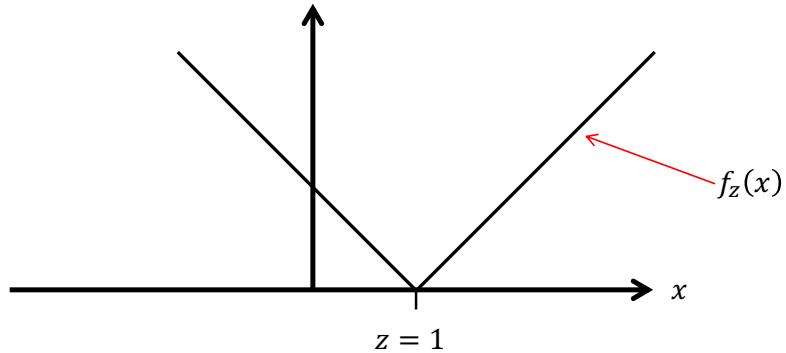


Q2c: When $x' \neq 0$, then the surrogate function has the form

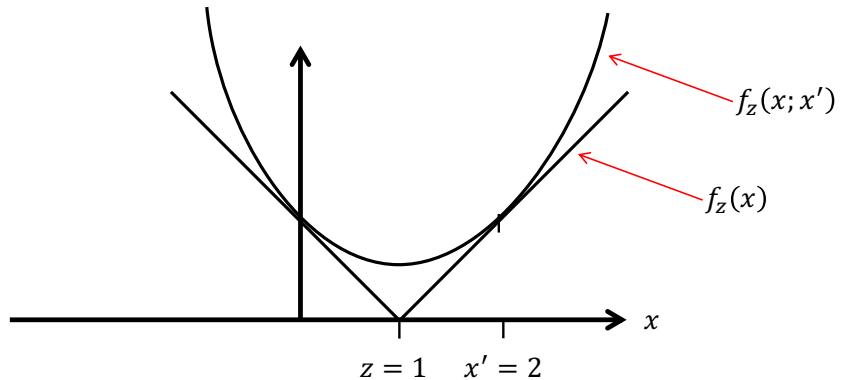
$$\rho(x; x') = \frac{\rho'(x')}{2x'} x^2 = \frac{1}{2|x'|} x^2.$$

However, the surrogate function does not exist when $x' = 0$

Q2d:



Q2e:



Q2f:

First notice that

$$f_z(x) = \rho(x - z).$$

So then we know that

$$\begin{aligned} f_z(x; x') &= \rho'(x - z; x' - z) \\ &= \frac{1}{2|x' - z|}(x - z)^2 \end{aligned}$$

Again, the surrogate function does not exist when $x' - z = 0$

Q2g:

First notice that

$$g(x) = \sum_{k=0}^{K-1} f_{x_k}(x).$$

So then we know that

$$g(x; x') = \sum_{k=0}^{K-1} \frac{1}{2|x' - x_k|}(x - x_k)^2$$

Again, the surrogate function does not exist when $x' - x_k = 0$ for any k .

Q2h:

$$x' \leftarrow 0$$

Repeat {

$$x' \leftarrow \arg \min_x g(x; x')$$

}

Name/PUID: _____

Problem 3.(24pt) Proximal Maps

Define the cost function

$$f_v(x) = u(x) + \frac{1}{2\sigma^2} \|x - v\|^2,$$

and the associated proximal map as

$$F(v) = \arg \min_{x \in \mathbb{R}^N} f_v(x)$$

where $u : \mathbb{R}^N \rightarrow \mathbb{R} \cup \infty$ is a continuously differentiable proper closed convex function.

Problem 3a) Provide the outline of a proof that the function $f_v : \mathbb{R}^N \rightarrow \mathbb{R} \cup \infty$ takes on a minimum value.

(Hint: This proof is a little tricky, so you can just provide the outline of a proof. You can use the theorem that any continuous function on a compact set (i.e., closed and bounded set) takes on its minimum value.)

Problem 3b) Using the result of 3a above, prove that the function $f_v : \mathbb{R}^N \rightarrow \mathbb{R} \cup \infty$ takes on a **unique** minimum?

Problem 3c) Let $u(x; y) = \frac{1}{2} \|y - Ax\|_\Lambda^2$ so that

$$F(v; y) = \arg \min_{x \in \mathbb{R}^N} \left\{ \frac{1}{2} \|y - Ax\|_\Lambda^2 + \frac{1}{2\sigma^2} \|x - v\|^2 \right\}.$$

Then show that the proximal map has the explicit form

$$F(v; y) = v + \left(\frac{1}{\sigma^2} I + A^t \Lambda A \right)^{-1} A^t \Lambda (y - Av) .$$

Problem 3d) Let $F(v; y)$ be a proximal map with the form

$$F(v; y) = \arg \min_{x \in \mathbb{R}^N} \left\{ \frac{1}{2} \|y - Ax\|_\Lambda^2 + \frac{1}{2\sigma^2} \|x - v\|^2 \right\}.$$

Then show that $F(v; Y)$ has an interpretation as the MAP estimate of X given Y under the assumption that $Y = AX + W$ where X and W are independent Gaussian random vectors with $X \sim N(v, \sigma^2 I)$ and $W \sim N(0, \Lambda^{-1})$.

Solution:

Q3a:

1. Since $u(x)$ is proper, we know that there $\exists x \in \mathbb{R}^N$ s.t., $f_v(x) < \infty$.
2. Then prove $\exists \alpha \in \mathbb{R}$ such that $A = \{x \in \mathbb{R}^N : f_v(x) \leq \alpha\}$ is closed and bounded.

3. Then by the stated theorem, we know that $\exists x^* \in \mathbb{R}^N$ such that x^* is the global minimum of f_v on A .

4. Then show that x^* must be the minimum of f_v on \mathbb{R}^N .

Q3b:

Since f_v is strictly convex, x^* must be the unique minimum of f_v on \mathbb{R}^N .

Q3c:

Let $z = x - v$. Then we need to minimize the function

$$\begin{aligned}\tilde{f}(z) &= \frac{1}{2} \|y - A(z + v)\|_\Lambda^2 + \frac{1}{2\sigma^2} \|z\|^2 \\ &= \frac{1}{2} \|(y - Av) - Az\|_\Lambda^2 + \frac{1}{2\sigma^2} \|z\|^2 \\ &= \frac{1}{2} \|\epsilon - Az\|_\Lambda^2 + \frac{1}{2\sigma^2} \|z\|^2\end{aligned}$$

where $\epsilon = y - Av$.

The solution to this minimization problem is given by

$$\begin{aligned}z^* &= \left(\frac{1}{\sigma^2} I + A^t \Lambda A \right)^{-1} A^t \Lambda \epsilon \\ &= \left(\frac{1}{\sigma^2} I + A^t \Lambda A \right)^{-1} A^t \Lambda (y - Av).\end{aligned}$$

Then since $z^* = x^* - v$, we have that

$$\begin{aligned}x^* &= z^* + v \\ &= v + \left(\frac{1}{\sigma^2} I + A^t \Lambda A \right)^{-1} A^t \Lambda (y - Av).\end{aligned}$$

Q3d:

Consider the cost function of

$$f(x) = \frac{1}{2} \|y - Ax\|_\Lambda^2 + \frac{1}{2\sigma^2} \|x - v\|^2.$$

We can interpret the left-hand term as the forward model term $-\log p(y|x)$, and the right-hand term as the prior model $-\log p(x)$.

Then the forward model has the form $Y = AX + W$ where $W \sim N(0, \Lambda^{-1})$, and the prior model term corresponds to $X \sim N(v, \sigma^2 I)$.

ECE641 Fact Sheet

Maximum Likelihood (ML) Estimator (Frequentist)

$$\begin{aligned}
\hat{\theta} &= \arg \max_{\theta \in \Omega} p_{\theta}(Y) = \arg \max_{\theta \in \Omega} \log p_{\theta}(Y) \\
0 &= \nabla_{\theta} p_{\theta}(Y) |_{\theta=\hat{\theta}} \\
\hat{\theta} &= T(Y) \\
\bar{\theta} &= \mathbb{E}_{\theta}[\hat{\theta}] \\
\text{bias}_{\theta} &= \bar{\theta} - \theta \quad \text{var}_{\theta} = \mathbb{E}_{\theta}[(\hat{\theta} - \bar{\theta})^2] \\
\text{MSE} &= \mathbb{E}_{\theta}[(\hat{\theta} - \theta)^2] = \text{var}_{\theta} + (\text{bias}_{\theta})^2
\end{aligned}$$

For $Y = AX + W$, where X and W are independent zero mean Gaussian distributed with R_X and R_W , respectively. Then the ML estimate is find by maximizing $\log(p_{y/x}(y/x))$:

$$\hat{X}_{ML} = (A^T R_W^{-1} A)^{-1} A^T R_W^{-1} y$$

Maximum A Posteriori (MAP) Estimator

$$\begin{aligned}
\hat{X}_{MAP} &= \arg \max_{x \in \Omega} p_{x|y}(x|Y) \\
&= \arg \max_{x \in \Omega} \log p_{x|y}(x|Y) \\
&= \arg \min_{x \in \Omega} \{-\log p_{y|x}(y|x) - \log p_x(x)\}
\end{aligned}$$

For $Y = AX + W$, where X and W are independent zero mean Gaussian distributed with R_X and R_W , respectively. Then the MAP or equivalently MMSE estimate is:

$$\hat{X}_{MAP} = (A^T R_W^{-1} A + R_X^{-1})^{-1} A^T R_W^{-1} y$$

Power Spectral Density (zero-mean WSS Gaussian process)

1D DTFT:

$$S_X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} R(n) e^{-j\omega n}$$

2D DSFT:

$$S_X(e^{j\omega_1}, e^{j\omega_2}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} R(m, n) e^{-j\omega_1 m - j\omega_2 n}$$

Causal Gaussian Models

$$\begin{aligned}
\sigma_n^2 &\stackrel{\Delta}{=} \mathbb{E}[\mathcal{E}_n^2], \quad \hat{X} = HX, \quad \mathcal{E} = (I - H)X = AX, \\
\mathbb{E}[\mathcal{E}\mathcal{E}^T] &= \Lambda, \quad \Lambda = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_N^2\}
\end{aligned}$$

$$\begin{aligned}
p_x(x) &= |\det(A)| p_{\mathcal{E}}(Ax), \quad |\det(A)| = 1, \\
R_X &= (A^T \Lambda^{-1} A)^{-1}
\end{aligned}$$

1-D Gaussian AR models:

- Toeplitz $H_{i,j} = h_{i-j}$
- Circulant $H_{i,j} = h_{(i-j) \bmod N}$
- P^{th} order IIR filter $X_n = \mathcal{E}_n + \sum_{i=1}^P X_{n-i} h_i$, $R_{\mathcal{E}}(i-j) = \mathbb{E}[\mathcal{E}_i \mathcal{E}_j] = \sigma_c^2 \delta_{i-j}$
- $R_X(n) * (\delta_n - h_n) * (\delta_n - h_{-n}) = R_{\mathcal{E}}(n) = \sigma_c^2 \delta_n$, $S_X = \frac{\sigma_c^2}{|1 - H(\omega)|^2}$

2-D Gaussian AR:

- $\mathcal{E}_s = X_s - \sum_{r \in W_p} h_r X_{s-r}$,
- Toeplitz block Toeplitz $H_{mN+k, nN+l} = h_{m-n, k-l}$

Non-causal Gaussian Models

- $\sigma_n^2 \stackrel{\Delta}{=} \mathbb{E}[\mathcal{E}_n^2 | X_i, i \neq n]$, $B_{i,j} = \frac{1}{\sigma_i^2} (\delta_{i-j} - g_{i,j})$, $\sigma_n^2 = (B_{n,n})^{-1}$, $g_{n,i} = \delta_{n-i} - \sigma_n^2 B_{n,i}$ (homogeneous: $g_{i,j} = g_{i-j}$, $\sigma_i^2 = \sigma_{NC}^2$)
- $G_{i,j} = g_{i,j}$, $\Gamma = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_N^2\}$, $B = \Gamma^{-1}(I - G)$, $\Gamma = \text{diag}(B)^{-1}$, $G = I - \Gamma B$, $\mathbb{E}[\mathcal{E}_n X_{n+k}] = \sigma_{NC}^2 \delta_k$
- $R_X(n) * (\delta_n - g_n) * (\delta_n - g_{-n}) = R_{\mathcal{E}}(n) = \sigma_{NC}^2 (\delta_n - g_n)$, $S_X = \frac{\sigma_{NC}^2}{1 - G(\omega)}$, $R_X(n) * (\delta_n - g_n) = \sigma_{NC}^2 \delta_n$
- **Relationship b/w AR and GMRF:** $\sigma_{NC}^2 = \frac{\sigma_c^2}{1 + \sum_{n=1}^P h_n^2}$, $g_n = \delta_n - \frac{(\delta_n - h_n) * (\delta_n - h_{-n})}{1 + \sum_{n=1}^P h_n^2} (= \frac{\rho}{1 + \rho^2} (\delta_{n-1} + \delta_{n+1}))$, $P = 1$

Surrogate Function

Our objective is to find a surrogate function $\rho(\Delta; \Delta')$, to the potential function $\rho(\Delta)$.

Maximum Curvature Method

Assume the surrogate function of the form

$$\rho(\Delta; \Delta') = \alpha_1 \Delta + \frac{\alpha_2}{2} (\Delta - \Delta')^2$$

where $\alpha_1 = \rho'(\Delta')$ and $\alpha_2 = \max_{\Delta \in \mathbb{R}} \rho''(\Delta)$.

Symmetric Bound Method

Assume that potential function is bounded by symmetric and quadratic function of Δ , then the surrogate function is

$$\rho(\Delta; \Delta') = \frac{\alpha_2}{2} \Delta^2$$

which results in the following symmetric bound surrogate function:

$$\rho(\Delta; \Delta') = \begin{cases} \frac{\rho'(\Delta')}{2\Delta'} \Delta^2 & \text{if } \Delta' \neq 0 \\ \frac{\rho'(0)}{2} \Delta^2 & \text{if } \Delta' = 0 \end{cases}$$

Review of Convexity in Optimization

Definition A.6. *Closed, Bounded, and Compact Sets*

Let $\mathcal{A} \subset \mathbb{R}^N$, then we say that \mathcal{A} is:

- **Closed** if every convergent sequence in \mathcal{A} has its limit in \mathcal{A} .
- **Bounded** if $\exists M$ such that $\forall x \in \mathcal{A}$, $\|x\| < M$.
- **Compact** if \mathcal{A} is both closed and bounded.

Definition A.11. Closed Functions

We say that function $f : \mathbb{R}^N \rightarrow \mathbb{R} \cup \{\infty\}$ is **closed** if for all $\alpha \in \mathbb{R}$, the sublevel set $\mathcal{A}_\alpha = \{x \in \mathbb{R}^N : f(x) \leq \alpha\}$ is closed set.

Theorem A.6. Continuity of Proper, Closed, Convex Functions

Let $f : \mathbb{R}^N \rightarrow \mathbb{R} \cup \{\infty\}$ be a proper convex function. Then f is closed if and only if it is lower semicontinuous.

Optimization Methods:

Gradient Descent: $x^{(k+1)} = x^{(k)} - \beta \nabla f(x^{(k)})$

Gradient Descent with Line Search:

$$d^{(k)} = -\nabla f(x^{(k)})$$

α solves the equation : $0 = \frac{\partial f(x^{(k)}) + \alpha d^{(k)}}{\partial \alpha} = [\nabla f(x^{(k)}) + \alpha d^{(k)}]^t d^{(k)}$.

Update: $x^{(k+1)} \leftarrow x^k + \alpha \frac{\|d^{(k)}\|^2}{\|d^{(k)}\|_Q^2} d^{(k)}$ where $Q = A^t \Lambda A + B$

Coordinate Descent :

$$\alpha = \frac{(y - Ax)^t \Lambda A_{*,s} - x^t B_{*,s}}{\|A_{*,s}\|_\Lambda^2 + B_{s,s}} \quad (\text{for } Y|X \sim N(AX, \Lambda^{-1}))$$

$$x_s \leftarrow x_s + \frac{(y - Ax)^t A_{*,s} - \lambda(x_s - \sum_{r \in \partial s} g_{s-r} x_r)}{\|A_{*,s}\|^2 + \lambda}, \quad \lambda = \frac{\sigma^2}{\sigma_x^2}$$

Pairwise quadratic form identity

$$x^t Bx = \sum_{s \in S} a_s x_s^2 + \frac{1}{2} \sum_{s \in S} \sum_{r \in S} b_{s,r} |x_s - x_r|^2, \quad a_s = \sum_{r \in S} B_{s,r}, \\ b_s = -B_{s,s}$$

Miscellaneous

For any invertible matrix A , 1. $\frac{\partial |A|}{\partial A} = |A| A^{-1}$ 2. $\frac{\partial \text{tr}(BA)}{\partial A} = B$ 3. $\text{tr}(AB) = \text{tr}(BA)$