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Name/PUID: Key
Problem 0.(6pt) Your name

Problem 1.(48pt) Maximum Likelihood Estimate

Let X1, . . . XN be i.i.d. samples from the family of distributions P✓{Xn = m} = ✓m for m =

0, . . . ,M � 1 and ✓ 2 ⌦ such that

⌦ = {✓ 2 RM : ✓m � 0 and
M�1X

m=0

✓m = 1.0} .

Furthermore, define

Nm =
NX

n=1

�(xn = m) ,

and in order to make things easier, assume the technical condition that that for all m, Nm 6= 0.

1a) Prove that ⌦ is a convex set.

1b) Is ⌦ an open or closed set? Justify your answer.

1c) Prove that ⌦ a bounded set.

1d) What name is given to the set ⌦. (Hint: Starts with an “s”.)

1e) Derive an expression for the negative log likelihood, l(✓) = � log p✓(x) where x = [x1, . . . xN ].

1f) Prove that l(✓) is a strictly convex function.

1g) Is the maximum likelihood estimate unique? Justify your answer.

1h) Derive an expression for the maximum likelihood estimate of ✓ given X = x.

Solution:

Q1a: Let x, y 2 ⌦ and let � 2 [0, 1]. Then let z = �x+ (1� �)y, then

zn = �xn + (1� �)yn 2 [0, 1] ,

and also

M�1X

n=0

zn =
M�1X

n=0

(�xn + (1� �)yn) (1)

= �

 
M�1X

n=0

xn

!
+ (1� �)

M�1X

n=0

yn (2)

= �1 + (1� �)1 (3)

= 1 . (4)
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So therefore, z 2 ⌦.

Q1b: ⌦ is a closed set because the boundaries of the set are included in ⌦.

Q1c: In order to show that the set is bounded, we need to show there there exists a T 2 R such

that for all x 2 ⌦, kxk < T .

Select T = M +1, then since each component of xn  1, we have that kxk M < T . So therefore,

⌦ is bounded.

Q1d: The set ⌦ is know as the “simplex” set.

Q1e:

l(✓) = � logP✓{X = x} (5)

= � log
NY

n=1

✓xn (6)

= � log
M�1Y

n=0

✓
Nm
m (7)

= �
M�1X

n=0

Nm log ✓m , (8)

where

Nm =
NX

n=1

�(xn = m) .

Q1f: l(✓) must be strictly convex because it is a sum of strictly convex function in each variable.

Note that Nm 6= 0, so every term of the sum is strictly convex.

Q1g: Yes, because the function being minimized is a strictly convex function on a convex set.

Q1h:

✓̂m =
Nm

N
.

3



Name/PUID:

Problem 2.(60pt) Plug-and-Play for Poisson Observations

Let Y ⇠ Pois(X) where X 2 R+N and X ⇠ p(x). 1

Furthermore, let Ĥ(x) be a MMSE denoiser that is designed to remove additive white Gaussian

noise with variance �
2.

2a) Derive an expression for the conditional probability p(y|x).

2b) Derive an expression for the negative log likelihood of f(x) = � log p(y|x).

2c) Give an explicit expression for the forward model proximal map

2d) Give an explicit expression for the prior model proximal map.

2e) What alternate interpretation can be given for H? Be specific.

2f) Are H and Ĥ the same? How do they di↵er?

2g) Describe how Ĥ can be designed using training data?

2h) Specify the Plug-and-Play (PnP) algorithm in terms of forward model proximal map, F , and

the denoiser Ĥ.

2i) Specify conditions on Ĥ that guarantee convergence of the PnP algorithm?

2j) If the PnP algorithm converges, then what conditions hold at convergence?

1
Here the notation Y ⇠ Pois(x) means each component of Yn is i.i.d. with a Poisson distribution of mean xn.
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Solution:

Q2a:

p(y|x) =
NY

n=1

x
yn
n e

�xn

yn!
(9)

Q2b:

f(x) = � log p(y|x) (10)

= �
NX

n=1

{yn log xn � xn � log yn!} (11)

=
NX

n=1

{xn � yn log xn + log yn!} (12)

Q2c:

F (z) = argmin
x

⇢
f(x) +

1

2�2
kx� zk2

�
(13)

= argmin
x

(
NX

n=1

{xn � yn log xn + log yn!}+
1

2�2
kx� zk2

)
(14)

= argmin
x

(
NX

n=1

{xn � yn log xn}+
1

2�2
kx� zk2

)
(15)

(16)

Q2d:

H(v) = arg min
x2<N

⇢
� log p(x) +

1

2�2
kx� vk2

�
,

Q2e: If we rewrite the proximal map as

H(v) = arg min
x2<N

⇢
1

2�2
kv � xk2 � log p(x)

�
,

then we can observe that the first term can be interpreted as � log p(v|x) where

p(v|x) = 1

(2⇡)N/2�N
exp

⇢
� 1

2�2
kv � xk2

�
,

So H can be interpreted as the MAP estimate of X given V where

V = X +W ,
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where W ⇠ N(0,�2
I) and X ⇠ p(x).

Q2f: No, H is the MAP denoiser, but Ĥ is the approximate MMSE denoiser created from training

data.

Q2g: Take a set of example training images, x(k) for k = {0, . . . ,K � 1}. Then for each k, add

independent white Gaussian noise.

v
(k) = x

(k) + �W ,

where W ⇠ N(0, I).

Then fit an estimator H✓(x) to the training data via the optimization

✓̂ = argmin
✓

(
K�1X

k=0

kv(k) � x
(k)k2

)
.

Then use Ĥ = H✓̂ as the approximate MMSE denoiser.

Q2h: The algorithm is given by

Initialize v, u

Repeat{

x F (v � u)

v  Ĥ(x+ u)

u u+ (x� v)

}

Q2i: Any of the following are su�cient answers:

1) A su�cient condition for convergence is that T = (2F � I)(2Ĥ � I) is non-expansive.

2) This is in turn guaranteed by if Ĥ is firmly non-expansive.

Q2j: Let x
⇤ and u

⇤ denote the converged values, then at convergence the following equilibrium

holds.

F (x⇤ � u
⇤) = Ĥ(x⇤ + u

⇤) .
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Name/PUID:

Problem 3.(42pt) EM Algorithm for Exponential Observations

LetXn for n = 1, · · · , N be a series of i.i.d. multinomial random variables with distribution P{Xn =

m} = ⇡m, and let Yn ⇠ 1
�m

e
�y/�m be conditionally independent random variables given Xn = m,

and let ✓ = {⇡0,�0, · · · ,⇡M�1,�M�1} parameterize the joint distribution.

Problem 3a) Calculate p✓(x, y), an expression for the joint probability density of {Xn, Yn}Nn=1.

Problem 3b) Calculate l(✓), an expression for the negative log likelihood from the measurements

{Xn, Yn}Nn=1.

Problem 3c) Calculate ⇡̂m, the maximum likelihood estimate of ⇡m given {Xn, Yn}Nn=1.

Problem 3d) Calculate �̂m, the maximum likelihood estimate of �m given {Xn, Yn}Nn=1.

Problem 3e) Use Bayes’ rule to calculate an expression for f(m|yn) = P{Xn = m|Yn = yn}.

Problem 3f) Specify the E-step of the EM algorithm for the estimation of ✓ for this specific

problem.

Problem 3g) Specify the M-step of the EM algorithm for the estimation of ✓ for this specific

problem.
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Solution:

Q3a: We first calculate the joint probability density of each {Xn, Yn} pairs given by

p (xn, yn) = p (yn | xn)⇡xn =
1

�xn

exp{�yn/�xn}⇡xn .

Since the Xn are independent and the Yn are independent, we have that

p(x, y) =
NY

n=1

⇢
1

�xn

exp{�yn/�xn}⇡xn

�
.

Q3b: The negative log likelihood is given by l(✓) = � log p(x, y). In order to calculate the negative

logarithm of the given probability function p(x, y), we apply the logarithm to the product. The

negative logarithm of a product becomes the sum of the negative logarithms of the individual terms.

1. Apply the negative logarithm to the product:

� log p(x, y) = � log

(
NY

n=1

1

�xn

exp{�yn/�xn}⇡xn

)

2. Convert the logarithm of a product into a sum of logarithms:

� log p(x, y) = �
NX

n=1

log

⇢
1

�xn

exp{�yn/�xn}⇡xn

�

3. Apply the logarithm properties to the terms inside the sum:

� log p(x, y) =
NX

n=1

⇢
yn

�xn

+ log �xn � log ⇡xn

�

This is the negative log likelihood from the measurements.

Q3c: The natural su�cient statistics for ✓ given (X,Y ) are

Nm =
NX

n=1

� (Xn = m)

bm =
NX

n=1

Yn� (Xn = m)

Therefore, the ML estimate of ⇡m is

⇡̂m =
Nm

N
.
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Q3d: The natural su�cient statistics for ✓ given (X,Y ) are

Nm =
NX

n=1

� (Xn = m)

bm =
NX

n=1

Yn� (Xn = m)

Therefore, the ML estimate of ⇡m is

�̂m =
bm

Nm
.

Q3e: The posterior probability calculated by Bayes’ rule,

f(m|ym, ✓) = P {Xn = m | Yn = yn}

=
P {Yn = yn | Xn = m}P {Xn = m}

PM�1
m=0 P {Yn = yn | Xn = m}P {Xn = m}

=
1
�m

e
�yn/�m⇡m

PM�1
m=0

1
�m

e�yn/�m⇡m

Q3f:

The E-step:

For n = 1, · · · , N and m = 0, · · · ,M � 1 calculate the posterior probability

fn(m) =
1
�m

e
�yn/�m⇡m

PM�1
m=0

1
�m

e�yn/�m⇡m

Then for m = {0, · · · ,M � 1} calculate

N̂m =
NX

n=1

fn(m)

b̂m =
NX

n=1

Ynfn(m)

Q3g:

The M-step:

Then for m = {0, · · · ,M � 1} calculate

⇡̂m =
N̂m

N

�̂m =
b̂m

N̂m

And repeat until converged.

9



Name/PUID:

Problem 4.(48pt) Reversible Markov Chains

Let Wn 2 {0, . . . ,M � 1} be a homogeneous Markov chain with transition probabilities given by

Qi,j =

⇢
1/3 if |(i� j)modM |  1
0 otherwise

.

Let u : ⌦! < be an energy function defined on ⌦ = {0, · · ·M � 1} such that

Z =
X

x2⌦
exp{�u(x)} ,

and let p(x) = 1
Z exp{�u(x)} be the associated Gibbs distribution.

Problem 4a) Does Q represent an irreducible Markov chain? Prove your answer.

Problem 4b) Does Q represent an aperiodic Markov chain? Prove your answer.

Problem 4c) Does Q represent an ergodic Markov chain? Prove your answer.

Problem 4d) Does Q represent a reversible Markov chain? Prove your answer.

Problem 4e) What is the stationary distribution for Q? Prove your answer.

Problem 4f) Specify the Metropolis algorithm for generating a Markov chain, Xn, that samples

from the distribution p(x) using proposal distribution Qi,j .

Problem 4g) Prove that the Markov chain Xn is irreducible and aperiodic.

Problem 4h) Prove that the Markov chain Xn satisfies the detailed balance equations with the

stationary distribution p(x).
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Solution:

Q4a: Yes, since after M iterations, it is possible to get between any two states.

Q4b: Yes, since the MC is irreducible, all the states communicate. Given any state, Qi,i = 1/3 > 0,

so no state can be periodic.

Q4c: Yes, since the MC is irreducible, aperiodic, and finite, it must be ergodic.

Q4d: Choose ⇡ = [1/M, 1/M, · · · , 1/M ]. Then if |i� j|  1 we have that

piQi,j =
1

M
Qi,j (17)

=
1

M

1

3
(18)

=
1

M
Qj,i (19)

= pjQj,i . (20)

If |i� j| > 1, then Qi,j = Qj,i = 0, so we also have that

piQi,j = 0 = pjQj,i . (21)

So the detailed balance equations hold. So the MR is reversible.

Q4e: Choose ⇡ = [1/M, 1/M, · · · , 1/M ]. Then ⇡i satisfies the full balance equations given by

⇡P = ⇡.

So this must be the stationary distribution of the ergodic Markov chain.

Q4f: The algorithm is given by

Initialize x

Repeat{

W ⇠ p(j) = Qx,j

�U  u(W )� u(x)

↵ min{1, exp(��U)}

With probability ↵

x W

}
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Q4g: Again, it is always possible to get between any two states in M steps. So the MC Xn is

irreducible.

In a single step, it is always possible to remain in the same state, so it must be aperiodic.

Q4h: The Markov chain is reversible. In order to prove this we need to show that

⇡iPi,j = ⇡jPj,i

for all state pairs, i, j.

First notice that 8i, j, Qi,j = Qj,i.

Also define the acceptance probability as

↵(i, j) = min{1, exp(�[u(j)� u(i)])} .

Then let ⇡i =
1
Z exp{�u(i)}; assume that i 6= j; and without loss of generality, that u(j) � u(i).

Then we have that

⇡iPi,j =
1

Z
exp{�u(i)} [↵(i, j)Qi,j ] (22)

=
1

Z
exp{�u(i)} [exp{�[u(j)� u(i)]}Qi,j ] (23)

=
1

Z
exp{�u(j)}Qi,j (24)

=
1

Z
exp{�u(j)}↵(j, i)Qj,i (25)

= ⇡jPj,i . (26)

Also, for i = j, the detail balance equation is trivially true.

So we see that ⇡i =
1
Z exp{�u(i)} solves the detailed balance equations.
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ECE641 Fact Sheet

Probability Background

Total Probability
P (A) =

P
n
P (A|Bn)P (Bn)

Total Probability for Conditional Probabilities
P (A|C) =

P
n
P (A|Bn, C)P (Bn|C)

Bayes’ Rule
P (B|A) = P (A|B)P (B)

P (A)

Conditional Joint Probability
P (A,B|C) = P (A|B,C)P (B|C)

Maximum Likelihood (ML) Estimator

(Frequentist)

✓̂ = argmax
✓2⌦

p✓(Y ) = argmax
✓2⌦

log p✓(Y )

0 = r✓p✓(Y )|
✓=✓̂

✓̂ = T (Y )

✓̄ = E✓[✓̂]

bias✓ = ✓̄ � ✓ var✓ = E✓[(✓̂ � ✓̄)2]

MSE = E✓[(✓̂ � ✓)2] = var✓ + (bias✓)
2

For Y = AX +W , where X and W are independent
zero mean Gaussian distributed with RX and RW ,
respectively. Then the ML estimate is find by maxi-
mizing log(py/x(y/x)):

X̂ML = (At
R

�1
W

A)�1
A

t
R

�1
W

y

Maximum A Posteriori (MAP) Estimator

X̂MAP = argmax
x2⌦

px|y(x|Y )

= argmax
x2⌦

log px|y(x|Y )

= argmin
x2⌦

{� log py|x(y|x)� log px(x)}

For Y = AX +W , where X and W are independent
zero mean Gaussian distributed with RX and RW ,
respectively. Then the MAP or equivalently MMSE
estimate is:

X̂MAP = (At
R

�1
W

A+R
�1
X

)�1
A

t
R

�1
W

y

Power Spectral Density

(zero-mean WSS Gaussian process)

1D DTFT:

SX(ej!) =
1X

n=�1
R(n)e�j!n

2D DSFT:

SX(ej!1 , e
j!2) =

1X

m=�1

1X

n=�1
R(m,n)e�j!1m�j!2n

Causal Gaussian Models

�
2
n

�
= E[E2

n
], X̂ = HX, E = (I � H)X = AX,

E[EE t] = ⇤, ⇤ = diag{�2
1 ,�

2
2 , ...,�

2
N
}

px(x) = |det(A)|pE(Ax), |det(A)| = 1,
RX = (At⇤�1

A)�1

1-D Gaussian AR models:

• Toeplitz Hi,j = hi�j

• Circulant Hi,j = h(i�j)modN

• P
th order IIR filter Xn = En +

P
P

i=1 Xn�ihi,
RE(i� j) = E[EiEj ] = �

2
c
�i�j

• RX(n)⇤(�n�hn)⇤(�n�h�n) = RE(n) = �
2
c
�n,

SX = �
2
c

|1�H(!)|2

2-D Gaussian AR:

• Es = Xs � ⌃
r2Wp

hrXs�r,

• Toeplitz block ToeplitzHmN+k,nN+l = hm�n,k�l

Non-causal Gaussian Models

• �
2
n

�
= E[E2

n
|Xi, i 6= n], Bi,j = 1

�
2
i
(�i�j � gi,j),

�
2
n
= (Bn,n)�1, gn,i = �n�i � �

2
n
Bn,i (homoge-

neous: gi,j = gi�j ,�2
i
= �

2
NC

)

• Gi,j = gi,j , � = diag{�2
1 ,�

2
2 , ...,�

2
N
},

B = ��1(I �G), � = diag(B)�1, G = I � �B,
E[EnXn+k] = �

2
NC

�k

• RX(n) ⇤ (�n � gn) ⇤ (�n � g�n) = RE(n) =

�
2
NC

(�n � gn), SX = �
2
NC

1�G(!) , RX(n) ⇤ (�n �
gn) = �

2
NC

�n

• Relationship b/w AR and GMRF: �
2
NC

=
�
2
c

1+
PP

n=1 h2
n
,

gn = �n � (�n�hn)⇤(�n�h�n)
1+

PP
n=1 h2

n
(= ⇢

1+⇢2 (�n�1 +

�n+1), P = 1)

Surrogate Function

Our objective is to find a surrogate function ⇢(�;�0),
to the potential function ⇢(�).
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Maximum Curvature Method

Assume the surrogate function of the form

⇢(�;�0) = ↵1�+
↵2

2
(���0)2

where ↵1 = ⇢
0(�0) and ↵2 = max�2R ⇢

00(�).

Symmetric Bound Method

Assume that potential function is bounded by sym-
metric and quadratic function of �, then the surro-
gate function is

⇢(�;�0) =
↵2

2
�2

which results in the following symmetric bound sur-
rogate function:

⇢(�;�0) =

(
⇢
0(�0)
2�0 �2 if �0 6= 0
⇢
00(0)
2 �2 if �0 = 0

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A ⇢ RN , then we say that A is:

• Closed if every convergent sequence in A has
its limit in A.

• Bounded if 9M such that 8x 2 A, kxk< M .

• Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RN ! R [ {1} is closed

if for all ↵ 2 R, the sublevel set A↵ = {x 2 RN :
f(x)  ↵} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RN ! R [ {1} be a proper convex func-
tion. Then f is closed if and only if it is lower semi-
continuous.

Optimization Methods:

Gradient Descent: x
(k+1) = x

(k) � �rf(x(k))
Gradient Descent with Line Search:

d
(k) = �rf(x(k))

↵ solves the equation : 0 = @f(x(k)+↵d
(k))

@↵
= [rf(x(k)+

↵d
(k))]td(k).

Update: x
(k+1)  x

k + ↵
kd(k)k2

kd(k)k2
Q
d
(k) where Q =

A
t⇤A+B

Coordinate Descent :

↵ = (y�Ax)t⇤A⇤,s�x
t
B⇤,s

kA⇤,sk2
⇤+Bs,s

(for Y |X ⇠ N(AX,⇤�1))

xs  xs +
(y�Ax)tA⇤,s��(xs�⌃r2@sgs�rxr)

kA⇤,sk2+�
, � = �

2

�2
x

Pairwise quadratic form identity

x
t
Bx = ⌃

s2S

asx
2
s
+ 1

2 ⌃
s2S

⌃
r2S

bs,r|xs�xr|2, as = ⌃
r2S

Bs,r,

bs = �Bs,r

Miscellaneous

For any invertible matrix A, 1. @|A|
@A

= |A|A�1 2.
@tr(BA)

@A
= B 3. tr(AB) = tr(BA)

Plug and Play

(non-expansive map)

(CE equations)

x
⇤ = F (x⇤ � u

⇤)

x
⇤ = H(x⇤ + u

⇤)

(Douglas-Rachford algorithm)

set ⇢ 2 (0, 1)

initialize w1

repeat{
w

0
1  Tw1

w1  (1� ⇢)w0
1 + ⇢w1

}
return w1

Note that here w1 = x � u, w2 = x + u, and

x = w1+w2
2 , so then (2F � I)w1 = w2. And,

T = (2H � I)(2F � I).

(Convergence of Douglas-Rachford algorithm)

When F and H are proximal maps of proper

closed convex functions f and h then Douglas-

Rachford algorithm converges to both the CE

solution and the MAP estimate.
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EM algorithm

General EM Algorithm:

E-step : Q(✓; ✓(k)) = E[log(p(y,X|✓))|Y = y, ✓
(k)]

M-step : ✓(k+1) = argmax✓2⌦Q(✓; ✓(k))

(ML estimate for Gaussian mixture)

log p(y, x|✓) = ⌃N
n=1 log p(yn, xn|✓) = ⌃N

n=1⌃
M�1
m=0 �(xn�

m){log p(yn|µm,�m) + log ⇡m}

(Exponential Family)

A family of density functions p✓(y) for y and ✓

is said to be a exponential family if there exists

functions ⌘(✓), s(y), and d(✓) and natural statis-

tic T (y) such that p✓(y) = exp{h⌘(✓), T (y)i +
d(✓) + s(y)}

(su�cient statistic)

T (Y ) is a su�cient statistic for the family of dis-

tributions p✓(y) if the density functions can be

written in the form p✓(y) = h(y)g(T (y), ✓) where

g and h are any two functions.

Markov Chains

Parameter Estimation for Markov Chains: Nj =

�(X0 � j), Ki,j = ⌃N
n=1�(Xn � j)�(Xn�1 � i)

log(p(x)) =
P

j2⌦{Nj log(⌧j)+
P

i2⌦Ki,j log(Pi,j)}
ML Estimate ⌧̂j = Nj and P̂i,j =

Ki,jP
j2⌦ Ki,j

Marginal density at any time n: ⇡
(n) = ⇡

(0)
P

n

and ⇡
(1) = ⇡

(0)
P

1

Log likelihood of HMM (MAP Estimate):

x̂ = argmaxx2⌦N {log ⌧x0 + ⌃N
n=1{log f(yn|xn) +

logPxn�1,xn}}
State Sequence Estimation and Dynamic Pro-

gramming:

L(j, n) = maxx>n{log p(y>n, x>n|xn = j)} and

L(j,N) = 0

L(i, n�1) = maxj2⌦{log f(yn|j)+logPi,j+L(j, n)}
x̂0 = argmaxj2⌦{log ⌧j + L(j, 0)}

x̂n = argmaxj2⌦{logPx̂n�1,j+log f(yn|j)+L(j, n)}
State Probability and the Forward-Backward Al-

gorithm:

↵n(j) = p(xn = j, yn, y<n) �n(j) = p(y>n|xn =

j)

p(xn�1 = i, xn = j|y) = ↵n�1(i)Pi,jf(yn|j)�n(j)
p(y)

↵n(j) =
P

i2⌦ ↵n�1(i)Pi,jf(yn|j)
�n(i) =

P
j2⌦ Pi,jf(yn+1|j)�n+1(j)

(Irreducible Markov Chain). A discrete-time,

discrete-space homogeneous Markov chain is said

to be irreducible if for all states i, j 2 ⌦ , i and

j communicate.

(Communicating States). States i, j 2 ⌦ of a

discrete-time, discrete-space homogeneous Markov

chain are said to communicate if there exists in-

tegers m > 0 and n > 0 such that [Pm]i,j > 0

and [Pn]j,i > 0.

(period of state) State i 2 ⌦ of a discrete-time,

discrete-space homogeneous Markov chain has

period d(i) = gcd{n 2 N+|[Pn]i,i > 0}.
State i is aperiodic if d(i) = 1 and periodic if

d(i) > 1.

Ergodic MC : ⇡j = limn!1[Pn]i,j > 0

(detailed balance equations)

⇡iPi,j = ⇡jPj,i
P

i2⌦ ⇡i = 1

(full balance equations)

⇡
1 = ⇡

1
P or ⇡j =

P
i2⌦ ⇡iPi,j

P
i2⌦ ⇡i = 1

Stochastic Sampling

(inverse transform sampling)

X  F
�1(U) where U  Rand([0, 1]) and F

�1(u) =

inf{x|F (x) � u} generates a sample from ran-

dom variable X with CDF F (x) = P{X  x}
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(Metropolis algorithm)

initialize X
0

for k from 0 to K � 1{
U  Rand([0, 1])

W  Q
�1(U |X(k))

↵ min{1, e�[u(W )�u(X(k))]}
U  Rand([0, 1])

if U < ↵ then X
(k+1)  W

else X
(k+1)  X

(k)

}

Note: where Q
�1(·|x(k)) is the inverse CDF cor-

responding to proposal density q(w|x(k))
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