PURDUE

ECE 64100

Final Exam, December 9, Fall 2024

NAME PUID

Exam instructions:
e A fact sheet is included at the end of this exam for your use.
¢ You have 120 minutes to work the exam.
e This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any
supplementary reference, a calculator, or any communication device including a cell-phone or computer.
¢ You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:
e Write your full name and PUID above and on the top of every page.
o Answer all questions in the area designated for each problem.
o Write only on the front of the exam pages.
e DO NOT run over to the next question.




Name/PUID: Key
Problem 0.(6pt) Your name

Problem 1.(48pt) Maximum Likelihood Estimate
Let Xi,... Xy be ii.d. samples from the family of distributions Py{X,, = m} = 6,, for m =
0,...,M —1 and 0 € () such that

M—1

Q={0ecRM:0,, >0and Zﬁmzl.O}.

m=0

Furthermore, define N
N, = Z5(xn =m),

n=1
and in order to make things easier, assume the technical condition that that for all m, N,, # 0.
1a) Prove that Q is a convex set.
1b) Is Q an open or closed set? Justify your answer.
1c) Prove that 2 a bounded set.
1d) What name is given to the set . (Hint: Starts with an “s”.)
le) Derive an expression for the negative log likelihood, I(0) = —log pp(x) where x = [z1,...xN].
1f) Prove that [() is a strictly convex function.
1g) Is the maximum likelihood estimate unique? Justify your answer.
1h) Derive an expression for the maximum likelihood estimate of 6 given X = x.

Solution:

Qla: Let z,y € Q and let A € [0,1]. Then let z = Ax + (1 — \)y, then

Zn = Axp + (1 = Ny, € [0,1] ,

and also
M—1 M—1
Zn = ()‘xn + (1 - )‘)yn) (1)
n=0 n=0
M—1 M—1
:A< xn>+<1_x>zyn @
n=0 n=0
=+ (1-A)1 (3)
1 (4)



So therefore, z € Q.

Q1b: € is a closed set because the boundaries of the set are included in ().

Q1lc: In order to show that the set is bounded, we need to show there there exists a T' € R such

that for all z € Q, ||z|| < T.

Select T'= M + 1, then since each component of z,, < 1, we have that ||z|| < M < T. So therefore,

) is bounded.

Q1d: The set € is know as the “simplex” set.

Qle:

[(0) = —log Py{X = x}

N
= —log [] 0.
n=1

where

Q1f: () must be strictly convex because it is a sum of strictly convex function in each variable.

Note that V,, # 0, so every term of the sum is strictly convex.

Q1lg: Yes, because the function being minimized is a strictly convex function on a convex set.

Q1lh:



Name/PUID:
Problem 2.(60pt) Plug-and-Play for Poisson Observations

Let Y ~ Pois(X) where X € R*N and X ~ p(x). [

Furthermore, let H(z) be a MMSE denoiser that is designed to remove additive white Gaussian

noise with variance 2.

2a) Derive an expression for the conditional probability p(y|z).

2b) Derive an expression for the negative log likelihood of f(z) = —log p(y|x).
2c¢) Give an explicit expression for the forward model proximal map

2d) Give an explicit expression for the prior model proximal map.

2e) What alternate interpretation can be given for H? Be specific.

2f) Are H and H the same? How do they differ?

2g) Describe how H can be designed using training data?

2h) Specify the Plug-and-Play (PnP) algorithm in terms of forward model proximal map, F', and
the denoiser H.

2i) Specify conditions on H that guarantee convergence of the PnP algorithm?

2j) If the PnP algorithm converges, then what conditions hold at convergence?

'Here the notation Y ~ Pois(z) means each component of Y;, is i.i.d. with a Poisson distribution of mean .



Solution:

Q2a:
.,L.Z’Jlnefxn
p(ylz) = ,
n=1 Yn:
Q2b:
f(z) = —logp(yl|z)
N
== {ynlogzn — zy — logya!}
N
= Z {mn — Un logxn + logyn!}
n=1
Q2c:
F(z) :argmin{f(l‘) \x—z”z}
N 1
:argmzin{z{ —ynlogan +logynlt + 55 Hx—zH?}
n=1
N 1
:argmmin{Z{ ynlogxn}+ ||:C—3H2}
n=1
Q2d:

1
H{(v) = arg min {—1ogp< >+U|x—vu2} |

zeRN

Q2e: If we rewrite the proximal map as

1 2
(0) = arg iy {22l ol - ogp(o) |

then we can observe that the first term can be interpreted as — log p(v|z) where

p(v|r) = WQXP —@”’U — )

So H can be interpreted as the MAP estimate of X given V where

V=X+W,

(10)

(11)

(12)



where W ~ N(0,02I) and X ~ p(z).

Q2f: No, H is the MAP denoiser, but H is the approximate MMSE denoiser created from training
data.

Q2g: Take a set of example training images, () for k = {0,..., K — 1}. Then for each k, add
independent white Gaussian noise.

o = 2™ 4 oW
where W ~ N(0, I).

Then fit an estimator Hy(x) to the training data via the optimization

K-1
j — i (k) _ (k)2
0 argmeln{kzo ||lv x| } .

Then use H = H 4 as the approximate MMSE denoiser.

Q2h: The algorithm is given by

Initialize v, u
Repeat{
x <+ F(v—u)
v+ H(z +u)

u—u+(x—v)

Q2i: Any of the following are sufficient answers:
1) A sufficient condition for convergence is that T = (2F — I)(2H — I) is non-expansive.

2) This is in turn guaranteed by if His firmly non-expansive.

Q2j: Let z* and u* denote the converged values, then at convergence the following equilibrium
holds.

F(z*¥ —u*)=H(z"+u") .



Name/PUID:
Problem 3.(42pt) EM Algorithm for Exponential Observations

Let X, forn =1,--- , N be a series of i.i.d. multinomial random variables with distribution P{X,, =

m} = mp, and let Y, ~ ﬁe*y/ Am be conditionally independent random variables given X,, = m,

and let 0 = {m, Ao, -+, Tar—1, Aaps—1} parameterize the joint distribution.
Problem 3a) Calculate pg(z,y), an expression for the joint probability density of {X,,, Y, }_;.

Problem 3b) Calculate I(6), an expression for the negative log likelihood from the measurements
{Xna Yn}g:l .

Problem 3c) Calculate #,,, the maximum likelihood estimate of ,, given {X,, Y, }_ .
Problem 3d) Calculate 5\m, the maximum likelihood estimate of A\, given {X,,, Yn}fyzl.
Problem 3e) Use Bayes’ rule to calculate an expression for f(mly,) = P{X,, = m|Y,, = yn}.

Problem 3f) Specify the E-step of the EM algorithm for the estimation of 6 for this specific

problem.

Problem 3g) Specify the M-step of the EM algorithm for the estimation of 6 for this specific

problem.



Solution:

Q3a: We first calculate the joint probability density of each {X,,,Y,} pairs given by

1
p(xnv yn) = p (yn | I’n) ﬂ-ﬂ?n = )\ eXp{_yn/)\$7z}7T$n'
Tn

Since the X,, are independent and the Y;, are independent, we have that

o) = T {5 eolomAnt e}

T
n=1 n

Q3b: The negative log likelihood is given by () = —log p(x, y). In order to calculate the negative
logarithm of the given probability function p(z,y), we apply the logarithm to the product. The
negative logarithm of a product becomes the sum of the negative logarithms of the individual terms.

1. Apply the negative logarithm to the product:

T
n=1 "

N
1
- logp(x, y) = —log { H )\7 exp{_yn/)‘xn} ﬂ-xn}
2. Convert the logarithm of a product into a sum of logarithms:
Al 1
— 10gp(‘r7 y) = - nzl log {)\mn eXp{_yn/)\In} Ty }

3. Apply the logarithm properties to the terms inside the sum:

N
—logp(z,y) = ) {i/” +log Ay, — 10g7fxn}

n=1

This is the negative log likelihood from the measurements.

Q3c: The natural sufficient statistics for 6 given (X,Y) are

Therefore, the ML estimate of m,, is



Q3d: The natural sufficient statistics for 6 given (X,Y") are

N
Ny =Y 6(X, =m)
n=1

N
b =Y Ynd (X, = m)
n=1

Therefore, the ML estimate of m, is
« b

A = —— .
m Nm

Q3e: The posterior probability calculated by Bayes’ rule,

f(m|ym,0) = P{Xp =m | Y, =yn}
_ P{Y, =y, | X, =m} P{X, =m}
M P{Y, =y | X =m} P{X, =m}

L e_yn/km Tm
m

M-=1 1 4. /)
Zm:() me yn/ ™

Q3f:
The E-step:
Forn=1,--- ,Nand m=0,--- , M — 1 calculate the posterior probability

/\L e_yn /)\m Tm

fn(m) = =
Z'r]r\{:()l ﬁe*yn/)\mﬂ-m

Then for m = {0,--- , M — 1} calculate

. N
n=1

. N
b = Vo fulm)
n=1

Q3g:
The M-step:
Then for m = {0,--- , M — 1} calculate
. Np,
T = ——
"N
< b
A = 2
N,

And repeat until converged.



Name/PUID:
Problem 4.(48pt) Reversible Markov Chains
Let Wy, € {0,...,M — 1} be a homogeneous Markov chain with transition probabilities given by

Qi — 1/3 if |(i — j)modpy| <1
10 otherwise

Let u : © — R be an energy function defined on Q = {0,--- M — 1} such that

Z=3 expl-u()}

e

and let p(z) = % exp{—u(z)} be the associated Gibbs distribution.

Problem 4a) Does @ represent an irreducible Markov chain? Prove your answer.
Problem 4b) Does @ represent an aperiodic Markov chain? Prove your answer.
Problem 4c) Does @) represent an ergodic Markov chain? Prove your answer.
Problem 4d) Does @ represent a reversible Markov chain? Prove your answer.
Problem 4e) What is the stationary distribution for Q7 Prove your answer.

Problem 4f) Specify the Metropolis algorithm for generating a Markov chain, X,,, that samples

from the distribution p(z) using proposal distribution @; ;.
Problem 4g) Prove that the Markov chain X, is irreducible and aperiodic.

Problem 4h) Prove that the Markov chain X, satisfies the detailed balance equations with the
stationary distribution p(zx).

10



Solution:

Q4a: Yes, since after M iterations, it is possible to get between any two states.

Q4b: Yes, since the MC is irreducible, all the states communicate. Given any state, Q;; = 1/3 > 0,

S0 no state can be periodic.

Q4c: Yes, since the MC is irreducible, aperiodic, and finite, it must be ergodic.

Q4d: Choose m = [1/M,1/M,--- ,1/M]. Then if |i — j| <1 we have that

1
PiQij = MQ@',]’
11
- M3
1
ZMQM
= piQji -

If |[i — j| > 1, then Q; ; = Qj; = 0, so we also have that

So the detailed balance equations hold. So the MR is reversible.

Q4e: Choose m = [1/M,1/M,--- ,1/M]. Then m; satisfies the full balance equations given by

So this must be the stationary distribution of the ergodic Markov chain.

Q4f: The algorithm is given by

piQij; =0=p;Qj; .

P = .

Initialize =«
Repeat{
W~ p(j) = Quj
AU — u(W) —u(z)
a < min{l, exp(—AU)}
With probability «
z+ W

11



Q4g: Again, it is always possible to get between any two states in M steps. So the MC X, is

irreducible.

In a single step, it is always possible to remain in the same state, so it must be aperiodic.

Q4h: The Markov chain is reversible. In order to prove this we need to show that
mibig = miby

for all state pairs, 1, j.
First notice that Vi, 7, Q;j = Q-
Also define the acceptance probability as

a(i, j) = min{1, exp(—[u(j) — u(i)])} .

Then let m; = % exp{—u(i)}; assume that i # j; and without loss of generality, that u(j) > (7).

Then we have that

miPyj = — exp{—u(i)} [a(, 1) Qi)

exp{—u(i)} [exp{—[u(j) — u(i)]}Qi]
exp{—u(j)}Qi,;

exp{—u(j)}a(j, i)Qj

)

N~

N~ N[~ N]

A

Also, for i = j, the detail balance equation is trivially true.

So we see that m; = % exp{—u(i)} solves the detailed balance equations.

12



ECE641 Fact Sheet

Probability Background 2D DSFT:

Total Probability _ _ e e . .

P(A) =¥, P(A|B,)P(B,) Sx(eln,el) = 37 3 R(mynjemfomien

Total Probability for Conditional Probabilities e

P(A|C) = 22, P(A[Bn, C)P(B,|C) Causal Gaussian Models

Bayes’ Rule A ;

P(B|A) = ZABEE) 02 = R[], X = HX, £ = (I - H)X = AX
P(A) E[EEY = A, A = diag{0?,03,...,0%}

Conditional Joint Probability
() = |det(A Azx), |det(A)| =1,
P(A,B|C) = P(A|B.C)P(B|C) B A e Az 1detA)

)

Maximum Likelihood (ML) Estimator 1-D Gaussian AR models:
(HequentISt) ® TOGplitZ Hi,j = hi_]‘
6= arg rgleaécpg(Y = arg reneaé( log pe(Y) e Circulant H; j = h(;—j)moan
0= Vopo(Y)ly_; o Pi" order TIR filter X,, = &, + .1, Xy _ihi,
. B Re(i—j) =E[&E] = 026,
) 70r) i~ J) = EIEE)] = 0%,
- . o Rx(n)*(6,—hn)*(6n—h_n) = Re(n) = 025,,
0 =Eg [9] o?
. i 5y X = =HwE
blaS.g =0-0 varg = Eg[(9 — 9) ]
MSE = Eg[(6 — 0)?] = vary + (biasg)? 2-D Gaussian AR:
For Y = AX + W, where X and W are independent o & =X, — %}V he Xs—r,
zero mean Gaussian distributed with Ry and Ry, r€e
respectively. Then the ML estimate is find by maxi- o Toeplitz block Toeplitz HyN4k,nN+1 = Pm—n, k-1

mizing log(py/.(y/x)):

g — (AtR‘jle)_lAtR‘jvly Non-causAal Gaussian Models

e o) = E[E2|X;,i # n], Bij = 0%_2(51-_]- = 9i,3),

Maximum A Posteriori (MAP) Estimator 02 = (Bnn)"Y, gni = 6n_i — 02 B, (homoge-
R neous: g; j = gi,jpf = 0'12VC)

X = arg max z|Y

MAP BUES Priy(2lY) e Gij=g;;, I =diag{o?, 03,..,0%},

= arg maxlog p, (2]Y) B=T"'I-G), T =diag(B)™!, G=1-TB,
e E[&0 Xpik] = 0200k

® Rx(n) * (0n — gn) * (0n — g-n) = Re(n) =
For Y = AX + W, where X and W are independent 03000 — gn), Sx = %7 Rx(n) * (0, —
zero mean Gaussian distributed with Rx and Ry,

respectively. Then the MAP or equivalently MMSE

= arggleig{— log py| (y]z) —log pa ()}

Gn) = U?Vcén

estimate is: e Relationship b/w AR and GMRF: 0%, =
Xurap = (A'Ryf A+ BT ARy y S
On—hn)*(6n—h_n
Gn = 6n _ 1+2):}£7 =~ )(: 1fp2 ((5774,1 +
Power Spectral Density Soin). P =1) n=1 "%
(zero-mean WSS Gaussian process) ’
1D DTFT: Surrogate Function
oo
i —jwn Our objective is to find a surrogate function p(A; A’)
S J — R J ’ ’
x(e) n;oo (n)e to the potential function p(A).

13



Maximum Curvature Method

Assume the surrogate function of the form
p(A;A) = ar A + %(A — A)?
where a; = p/(A’) and @y = maxacr p”(A).

Symmetric Bound Method

Assume that potential function is bounded by sym-
metric and quadratic function of A, then the surro-
gate function is

Pl &) = A2
which results in the following symmetric bound sur-
rogate function:
AP AT A £ 0
A2 i A =0

p(A;A") = {

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A C RY, then we say that A is:
e Closed if every convergent sequence in A has
its limit in A.
e Bounded if 3M such that Vo € A, ||z||< M.
e Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RV — R U {oo} is closed
if for all @ € R, the sublevel set A, = {z € RV :
f(x) < a} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RY — R U {oo} be a proper convex func-
tion. Then f is closed if and only if it is lower semi-
continuous.

Optimization Methods:

Gradient Descent: x(Ft1) = (k) — 3V f(2(*)
Gradient Descent with Line Search:

d®) = —V f(z®)

a solves the equation : 0 = w = [Vf(z®+
ad®)]td®) .

[ ])2

- d®) where Q =

Update: D) «— 2k 4 oo
a3

A'AA + B
Coordinat;e Descent :

_ (y—Ax)’AA. s—a'B. s ~ 1
o= T4 T5+Be.c (for Y|X ~ N(AX,A™1))
y—Ax)' Ay s—AN@s—ErcosGs—rTr 2
7y 4y 4 AR Rsatenstn) J = 2
Pairwise quadratic form identity
'Br = ¥ asa?+3 ¥ 3 by ylrs—,|?, a5 = X By,
s€S seSres 7’ resS '
bs = _Bs,r
Miscellaneous
For any invertible matrix A, 1. % = |A|A7t 2.

9(BA) — B 3. tr(AB) = tr(BA)
Plug and Play

(non-expansive map)

(CE equations)
¥ = F(ax* —u")

¥ = H(z* 4+ u¥)

(Douglas-Rachford algorithm)

set p € (0,1)

initialize wq

repeatq{

w) « Tw;

wy < (1= p)wy + pwy

}

return wip

Note that here w1 = =z — u, wy = z + u, and
r = %2 5o then (2F — I)wy = wy. And,
T=(2H —I)2F —I).

(Convergence of Douglas-Rachford algorithm)
When F and H are proximal maps of proper
closed convex functions f and h then Douglas-
Rachford algorithm converges to both the CE
solution and the MAP estimate.

14



EM algorithm

General EM Algorithm:
E-step: Q(6;0%) = Ellog(p(y, X10))[Y = y,6")]
M-step : 0D = arg maxgeq Q(0; %))

(ML estimate for Gaussian mixture)

log p(y, 2/0) = SN log p(yn, 7|0) = S SM15(Ey

m){logp(yn|lu’ma Jm) + log Wm}

(Exponential Family)

A family of density functions py(y) for y and 6
is said to be a exponential family if there exists
functions 7(0), s(y), and d(#) and natural statis-
tic T'(y) such that pg(y) = exp{(n(0),T(y)) +
a(6) + s(y)}

(sufficient statistic)

T(Y) is a sufficient statistic for the family of dis-
tributions py(y) if the density functions can be
written in the form py(y) = h(y)g(T(y),0) where

g and h are any two functions.

Markov Chains

Parameter Estimation for Markov Chains: N; =

¥y, = arg maxjeqilog Py, -1 j+1log f(ynlj)+L(j,n)}
State Probability and the Forward-Backward Al-
gorithm:

an(j) = p(xn = ja y’my<n) ﬂn(ﬂ) = p(y>n|xn =
7)

(1 = i, 3y = jly) = 22100 1))

p(y)
an(f) = 2ieq n-1(0) P f(ynld)

B’ﬂ(z) = Zjeﬂ B,jf(yn—l-l’j)/@n—i-l(j)
(Irreducible Markov Chain).

discrete-space homogeneous Markov chain is said

A discrete-time,

to be irreducible if for all states 7,5 € Q , ¢ and

J communicate.

(Communicating States). States i,7 € Q of a
discrete-time, discrete-space homogeneous Markov
chain are said to communicate if there exists in-
tegers m > 0 and n > 0 such that [P™];; > 0
and [P"];; > 0.

(period of state) State i € Q of a discrete-time,
discrete-space homogeneous Markov chain has
period d(i) = ged{n € NL|[P"];; > 0}.

State ¢ is aperiodic if d(i) = 1 and periodic if
d(i) > 1.

log(p(x)) = >_jcq{N;log(mj)+> icq Ki,j log(Pi ;) YErgodic MC @ mj = limy 00 [P"]; j > 0

0(Xo —j), Kij = B30 10(Xp — §)0(Xp-1 — i)
. A 3 Kij
ML Estimate 7; = N; and P, ; = Z]T]Ku

Marginal density at any time n: 7 = 7(0)pn
and 7() = 7(0) poe

Log likelihood of HMM (MAP Estimate):

& = argmax,eqn {log 7z, + Z,jy:l{log f(ynlzn) +
log Pr,, 1z, }}

State Sequence Estimation and Dynamic Pro-
gramming:

L(j,n) = max,.,{logp(ysn,T>n|zn = j)} and
L(j,N)=0

L(i,n—1) = max;co{log f(yn|j)+log P; j+L(j,n)}

To = argmax;eo{log7; + L(4,0)}

(detailed balance equations)
TP =1y

Diicomi =1

(full balance equations)

T =7®Porwj =) . .qmibF;;

Yieq i =1
Stochastic Sampling

(inverse transform sampling)

X + F~1(U) where U + Rand([0,1]) and F~(u) =

inf{z|F(z) > u} generates a sample from ran-
dom variable X with CDF F(z) = P{X < x}

15



(Metropolis algorithm)
initialize X

for k from 0 to K — 1{

U + Rand([0,1])

W e QL (UX W)

a <+ min{1, e_[“(W)_“(X(k))]}
U < Rand([0,1])

if U < a then X*+D) « W
else XD  x (k)

}
Note: where Q71 (-|z(®)) is the inverse CDF cor-
responding to proposal density q(w|x(k))

16



