

PURDUE

ECE 64100

Final Exam, December 9, Fall 2024

NAME _____

PUID _____

Exam instructions:

- A fact sheet is included **at the end of this exam** for your use.
- You have 120 minutes to work the exam.
- This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any supplementary reference, a calculator, or any communication device including a cell-phone or computer.
- You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:

- Write your full name and PUID above and on the top of every page.
- Answer all questions in the area designated for each problem.
- Write only on the front of the exam pages.
- DO NOT run over to the next question.

Name/PUID: _____ Key _____

Problem 0.(6pt) Your name

Problem 1.(48pt) Maximum Likelihood Estimate

Let X_1, \dots, X_N be i.i.d. samples from the family of distributions $P_\theta\{X_n = m\} = \theta_m$ for $m = 0, \dots, M - 1$ and $\theta \in \Omega$ such that

$$\Omega = \{ \theta \in \mathbb{R}^M : \theta_m \geq 0 \text{ and } \sum_{m=0}^{M-1} \theta_m = 1.0 \} .$$

Furthermore, define

$$N_m = \sum_{n=1}^N \delta(x_n = m) ,$$

and in order to make things easier, assume the technical condition that for all m , $N_m \neq 0$.

1a) Prove that Ω is a convex set.

1b) Is Ω an open or closed set? Justify your answer.

1c) Prove that Ω a bounded set.

1d) What name is given to the set Ω . (Hint: Starts with an “s”.)

1e) Derive an expression for the negative log likelihood, $l(\theta) = -\log p_\theta(x)$ where $x = [x_1, \dots, x_N]$.

1f) Prove that $l(\theta)$ is a strictly convex function.

1g) Is the maximum likelihood estimate unique? Justify your answer.

1h) Derive an expression for the maximum likelihood estimate of θ given $X = x$.

Solution:

Q1a: Let $x, y \in \Omega$ and let $\lambda \in [0, 1]$. Then let $z \equiv \lambda x + (1 - \lambda)y$, then

$$z_n \equiv \lambda x_n + (1-\lambda)y_n \in [0,1] \, .$$

and also

$$\sum_{n=0}^{M-1} z_n = \sum_{n=0}^{M-1} (\lambda x_n + (1-\lambda)y_n) \quad (1)$$

$$= \lambda \left(\sum_{n=0}^{M-1} x_n \right) + (1 - \lambda) \sum_{n=0}^{M-1} y_n \quad (2)$$

$$\equiv \lambda 1 + (1 - \lambda) 1 \quad (3)$$

$$\equiv 1. \quad (4)$$

So therefore, $z \in \Omega$.

Q1b: Ω is a closed set because the boundaries of the set are included in Ω .

Q1c: In order to show that the set is bounded, we need to show there exists a $T \in \mathbb{R}$ such that for all $x \in \Omega$, $\|x\| < T$.

Select $T = M + 1$, then since each component of $x_n \leq 1$, we have that $\|x\| \leq M < T$. So therefore, Ω is bounded.

Q1d: The set Ω is known as the “simplex” set.

Q1e:

$$l(\theta) = -\log P_\theta\{X = x\} \quad (5)$$

$$= -\log \prod_{n=1}^N \theta_{x_n} \quad (6)$$

$$= -\log \prod_{n=0}^{M-1} \theta_m^{N_m} \quad (7)$$

$$= -\sum_{n=0}^{M-1} N_m \log \theta_m , \quad (8)$$

where

$$N_m = \sum_{n=1}^N \delta(x_n = m) .$$

Q1f: $l(\theta)$ must be strictly convex because it is a sum of strictly convex functions in each variable. Note that $N_m \neq 0$, so every term of the sum is strictly convex.

Q1g: Yes, because the function being minimized is a strictly convex function on a convex set.

Q1h:

$$\hat{\theta}_m = \frac{N_m}{N} .$$

Name/PUID: _____

Problem 2.(60pt) Plug-and-Play for Poisson Observations

Let $Y \sim \text{Pois}(X)$ where $X \in \mathbb{R}^{+N}$ and $X \sim p(x)$. ¹

Furthermore, let $\hat{H}(x)$ be a MMSE denoiser that is designed to remove additive white Gaussian noise with variance σ^2 .

- 2a)** Derive an expression for the conditional probability $p(y|x)$.
- 2b)** Derive an expression for the negative log likelihood of $f(x) = -\log p(y|x)$.
- 2c)** Give an explicit expression for the forward model proximal map
- 2d)** Give an explicit expression for the prior model proximal map.
- 2e)** What alternate interpretation can be given for H ? Be specific.
- 2f)** Are H and \hat{H} the same? How do they differ?
- 2g)** Describe how \hat{H} can be designed using training data?
- 2h)** Specify the Plug-and-Play (PnP) algorithm in terms of forward model proximal map, F , and the denoiser \hat{H} .
- 2i)** Specify conditions on \hat{H} that guarantee convergence of the PnP algorithm?
- 2j)** If the PnP algorithm converges, then what conditions hold at convergence?

¹Here the notation $Y \sim \text{Pois}(x)$ means each component of Y_n is i.i.d. with a Poisson distribution of mean x_n .

Solution:

Q2a:

$$p(y|x) = \prod_{n=1}^N \frac{x_n^{y_n} e^{-x_n}}{y_n!} \quad (9)$$

Q2b:

$$f(x) = -\log p(y|x) \quad (10)$$

$$= -\sum_{n=1}^N \{y_n \log x_n - x_n - \log y_n!\} \quad (11)$$

$$= \sum_{n=1}^N \{x_n - y_n \log x_n + \log y_n!\} \quad (12)$$

Q2c:

$$F(z) = \arg \min_x \left\{ f(x) + \frac{1}{2\sigma^2} \|x - z\|^2 \right\} \quad (13)$$

$$= \arg \min_x \left\{ \sum_{n=1}^N \{x_n - y_n \log x_n + \log y_n!\} + \frac{1}{2\sigma^2} \|x - z\|^2 \right\} \quad (14)$$

$$= \arg \min_x \left\{ \sum_{n=1}^N \{x_n - y_n \log x_n\} + \frac{1}{2\sigma^2} \|x - z\|^2 \right\} \quad (15)$$

(16)

Q2d:

$$H(v) = \arg \min_{x \in \Re^N} \left\{ -\log p(x) + \frac{1}{2\sigma^2} \|x - v\|^2 \right\} ,$$

Q2e: If we rewrite the proximal map as

$$H(v) = \arg \min_{x \in \Re^N} \left\{ \frac{1}{2\sigma^2} \|v - x\|^2 - \log p(x) \right\} ,$$

then we can observe that the first term can be interpreted as $-\log p(v|x)$ where

$$p(v|x) = \frac{1}{(2\pi)^{N/2}\sigma^N} \exp \left\{ -\frac{1}{2\sigma^2} \|v - x\|^2 \right\} ,$$

So H can be interpreted as the MAP estimate of X given V where

$$V = X + W ,$$

where $W \sim N(0, \sigma^2 I)$ and $X \sim p(x)$.

Q2f: No, H is the MAP denoiser, but \hat{H} is the approximate MMSE denoiser created from training data.

Q2g: Take a set of example training images, $x^{(k)}$ for $k = \{0, \dots, K-1\}$. Then for each k , add independent white Gaussian noise.

$$v^{(k)} = x^{(k)} + \sigma W ,$$

where $W \sim N(0, I)$.

Then fit an estimator $H_\theta(x)$ to the training data via the optimization

$$\hat{\theta} = \arg \min_{\theta} \left\{ \sum_{k=0}^{K-1} \|v^{(k)} - x^{(k)}\|^2 \right\} .$$

Then use $\hat{H} = H_{\hat{\theta}}$ as the approximate MMSE denoiser.

Q2h: The algorithm is given by

```

Initialize  $v, u$ 
Repeat {
     $x \leftarrow F(v - u)$ 
     $v \leftarrow \hat{H}(x + u)$ 
     $u \leftarrow u + (x - v)$ 
}

```

Q2i: Any of the following are sufficient answers:

- 1) A sufficient condition for convergence is that $T = (2F - I)(2\hat{H} - I)$ is non-expansive.
- 2) This is in turn guaranteed by if \hat{H} is firmly non-expansive.

Q2j: Let x^* and u^* denote the converged values, then at convergence the following equilibrium holds.

$$F(x^* - u^*) = \hat{H}(x^* + u^*) .$$

Name/PUID: _____

Problem 3.(42pt) EM Algorithm for Exponential Observations

Let X_n for $n = 1, \dots, N$ be a series of i.i.d. multinomial random variables with distribution $P\{X_n = m\} = \pi_m$, and let $Y_n \sim \frac{1}{\lambda_m} e^{-y/\lambda_m}$ be conditionally independent random variables given $X_n = m$, and let $\theta = \{\pi_0, \lambda_0, \dots, \pi_{M-1}, \lambda_{M-1}\}$ parameterize the joint distribution.

Problem 3a) Calculate $p_\theta(x, y)$, an expression for the joint probability density of $\{X_n, Y_n\}_{n=1}^N$.

Problem 3b) Calculate $l(\theta)$, an expression for the negative log likelihood from the measurements $\{X_n, Y_n\}_{n=1}^N$.

Problem 3c) Calculate $\hat{\pi}_m$, the maximum likelihood estimate of π_m given $\{X_n, Y_n\}_{n=1}^N$.

Problem 3d) Calculate $\hat{\lambda}_m$, the maximum likelihood estimate of λ_m given $\{X_n, Y_n\}_{n=1}^N$.

Problem 3e) Use Bayes' rule to calculate an expression for $f(m|y_n) = P\{X_n = m|Y_n = y_n\}$.

Problem 3f) Specify the E-step of the EM algorithm for the estimation of θ for this specific problem.

Problem 3g) Specify the M-step of the EM algorithm for the estimation of θ for this specific problem.

Solution:

Q3a: We first calculate the joint probability density of each $\{X_n, Y_n\}$ pairs given by

$$p(x_n, y_n) = p(y_n | x_n) \pi_{x_n} = \frac{1}{\lambda_{x_n}} \exp\{-y_n/\lambda_{x_n}\} \pi_{x_n}.$$

Since the X_n are independent and the Y_n are independent, we have that

$$p(x, y) = \prod_{n=1}^N \left\{ \frac{1}{\lambda_{x_n}} \exp\{-y_n/\lambda_{x_n}\} \pi_{x_n} \right\}.$$

Q3b: The negative log likelihood is given by $l(\theta) = -\log p(x, y)$. In order to calculate the negative logarithm of the given probability function $p(x, y)$, we apply the logarithm to the product. The negative logarithm of a product becomes the sum of the negative logarithms of the individual terms.

1. Apply the negative logarithm to the product:

$$-\log p(x, y) = -\log \left\{ \prod_{n=1}^N \frac{1}{\lambda_{x_n}} \exp\{-y_n/\lambda_{x_n}\} \pi_{x_n} \right\}$$

2. Convert the logarithm of a product into a sum of logarithms:

$$-\log p(x, y) = -\sum_{n=1}^N \log \left\{ \frac{1}{\lambda_{x_n}} \exp\{-y_n/\lambda_{x_n}\} \pi_{x_n} \right\}$$

3. Apply the logarithm properties to the terms inside the sum:

$$-\log p(x, y) = \sum_{n=1}^N \left\{ \frac{y_n}{\lambda_{x_n}} + \log \lambda_{x_n} - \log \pi_{x_n} \right\}$$

This is the negative log likelihood from the measurements.

Q3c: The natural sufficient statistics for θ given (X, Y) are

$$N_m = \sum_{n=1}^N \delta(X_n = m)$$

$$b_m = \sum_{n=1}^N Y_n \delta(X_n = m)$$

Therefore, the ML estimate of π_m is

$$\hat{\pi}_m = \frac{N_m}{N}.$$

Q3d: The natural sufficient statistics for θ given (X, Y) are

$$N_m = \sum_{n=1}^N \delta(X_n = m)$$

$$b_m = \sum_{n=1}^N Y_n \delta(X_n = m)$$

Therefore, the ML estimate of π_m is

$$\hat{\lambda}_m = \frac{b_m}{N_m}.$$

Q3e: The posterior probability calculated by Bayes' rule,

$$f(m|y_m, \theta) = P\{X_n = m \mid Y_n = y_n\}$$

$$= \frac{P\{Y_n = y_n \mid X_n = m\} P\{X_n = m\}}{\sum_{m=0}^{M-1} P\{Y_n = y_n \mid X_n = m\} P\{X_n = m\}}$$

$$= \frac{\frac{1}{\lambda_m} e^{-y_n/\lambda_m} \pi_m}{\sum_{m=0}^{M-1} \frac{1}{\lambda_m} e^{-y_n/\lambda_m} \pi_m}$$

Q3f:

The E-step:

For $n = 1, \dots, N$ and $m = 0, \dots, M-1$ calculate the posterior probability

$$f_n(m) = \frac{\frac{1}{\lambda_m} e^{-y_n/\lambda_m} \pi_m}{\sum_{m=0}^{M-1} \frac{1}{\lambda_m} e^{-y_n/\lambda_m} \pi_m}$$

Then for $m = \{0, \dots, M-1\}$ calculate

$$\hat{N}_m = \sum_{n=1}^N f_n(m)$$

$$\hat{b}_m = \sum_{n=1}^N Y_n f_n(m)$$

Q3g:

The M-step:

Then for $m = \{0, \dots, M-1\}$ calculate

$$\hat{\pi}_m = \frac{\hat{N}_m}{N}$$

$$\hat{\lambda}_m = \frac{\hat{b}_m}{\hat{N}_m}$$

And repeat until converged.

Name/PUID: _____

Problem 4.(48pt) Reversible Markov Chains

Let $W_n \in \{0, \dots, M-1\}$ be a homogeneous Markov chain with transition probabilities given by

$$Q_{i,j} = \begin{cases} 1/3 & \text{if } |(i-j)\bmod_M| \leq 1 \\ 0 & \text{otherwise} \end{cases}.$$

Let $u : \Omega \rightarrow \mathbb{R}$ be an energy function defined on $\Omega = \{0, \dots, M-1\}$ such that

$$Z = \sum_{x \in \Omega} \exp\{-u(x)\},$$

and let $p(x) = \frac{1}{Z} \exp\{-u(x)\}$ be the associated Gibbs distribution.

Problem 4a) Does Q represent an irreducible Markov chain? Prove your answer.

Problem 4b) Does Q represent an aperiodic Markov chain? Prove your answer.

Problem 4c) Does Q represent an ergodic Markov chain? Prove your answer.

Problem 4d) Does Q represent a reversible Markov chain? Prove your answer.

Problem 4e) What is the stationary distribution for Q ? Prove your answer.

Problem 4f) Specify the Metropolis algorithm for generating a Markov chain, X_n , that samples from the distribution $p(x)$ using proposal distribution $Q_{i,j}$.

Problem 4g) Prove that the Markov chain X_n is irreducible and aperiodic.

Problem 4h) Prove that the Markov chain X_n satisfies the detailed balance equations with the stationary distribution $p(x)$.

Solution:

Q4a: Yes, since after M iterations, it is possible to get between any two states.

Q4b: Yes, since the MC is irreducible, all the states communicate. Given any state, $Q_{i,i} = 1/3 > 0$, so no state can be periodic.

Q4c: Yes, since the MC is irreducible, aperiodic, and finite, it must be ergodic.

Q4d: Choose $\pi = [1/M, 1/M, \dots, 1/M]$. Then if $|i - j| \leq 1$ we have that

$$p_i Q_{i,j} = \frac{1}{M} Q_{i,j} \quad (17)$$

$$= \frac{1}{M} \frac{1}{3} \quad (18)$$

$$= \frac{1}{M} Q_{j,i} \quad (19)$$

$$= p_j Q_{j,i} . \quad (20)$$

If $|i - j| > 1$, then $Q_{i,j} = Q_{j,i} = 0$, so we also have that

$$p_i Q_{i,j} = 0 = p_j Q_{j,i} . \quad (21)$$

So the detailed balance equations hold. So the MR is reversible.

Q4e: Choose $\pi = [1/M, 1/M, \dots, 1/M]$. Then π_i satisfies the full balance equations given by

$$\pi P = \pi.$$

So this must be the stationary distribution of the ergodic Markov chain.

Q4f: The algorithm is given by

```

Initialize  $x$ 
Repeat{

     $W \sim p(j) = Q_{x,j}$ 
     $\Delta U \leftarrow u(W) - u(x)$ 
     $\alpha \leftarrow \min\{1, \exp(-\Delta U)\}$ 
    With probability  $\alpha$ 
         $x \leftarrow W$ 
    }

}
```

Q4g: Again, it is always possible to get between any two states in M steps. So the MC X_n is irreducible.

In a single step, it is always possible to remain in the same state, so it must be aperiodic.

Q4h: The Markov chain is reversible. In order to prove this we need to show that

$$\pi_i P_{i,j} = \pi_j P_{j,i}$$

for all state pairs, i, j .

First notice that $\forall i, j, Q_{i,j} = Q_{j,i}$.

Also define the acceptance probability as

$$\alpha(i, j) = \min\{1, \exp(-[u(j) - u(i)])\} .$$

Then let $\pi_i = \frac{1}{Z} \exp\{-u(i)\}$; assume that $i \neq j$; and without loss of generality, that $u(j) \geq u(i)$.

Then we have that

$$\pi_i P_{i,j} = \frac{1}{Z} \exp\{-u(i)\} [\alpha(i, j) Q_{i,j}] \quad (22)$$

$$= \frac{1}{Z} \exp\{-u(i)\} [\exp\{-[u(j) - u(i)]\} Q_{i,j}] \quad (23)$$

$$= \frac{1}{Z} \exp\{-u(j)\} Q_{i,j} \quad (24)$$

$$= \frac{1}{Z} \exp\{-u(j)\} \alpha(j, i) Q_{j,i} \quad (25)$$

$$= \pi_j P_{j,i} . \quad (26)$$

Also, for $i = j$, the detail balance equation is trivially true.

So we see that $\pi_i = \frac{1}{Z} \exp\{-u(i)\}$ solves the detailed balance equations.

ECE641 Fact Sheet

Probability Background

Total Probability

$$P(A) = \sum_n P(A|B_n)P(B_n)$$

Total Probability for Conditional Probabilities

$$P(A|C) = \sum_n P(A|B_n, C)P(B_n|C)$$

Bayes' Rule

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Conditional Joint Probability

$$P(A, B|C) = P(A|B, C)P(B|C)$$

Maximum Likelihood (ML) Estimator (Frequentist)

$$\begin{aligned}\hat{\theta} &= \arg \max_{\theta \in \Omega} p_{\theta}(Y) = \arg \max_{\theta \in \Omega} \log p_{\theta}(Y) \\ 0 &= \nabla_{\theta} p_{\theta}(Y)|_{\theta=\hat{\theta}} \\ \hat{\theta} &= T(Y) \\ \bar{\theta} &= \mathbb{E}_{\theta}[\hat{\theta}] \\ \text{bias}_{\theta} &= \bar{\theta} - \theta \quad \text{var}_{\theta} = \mathbb{E}_{\theta}[(\hat{\theta} - \bar{\theta})^2] \\ \text{MSE} &= \mathbb{E}_{\theta}[(\hat{\theta} - \theta)^2] = \text{var}_{\theta} + (\text{bias}_{\theta})^2\end{aligned}$$

For $Y = AX + W$, where X and W are independent zero mean Gaussian distributed with R_X and R_W , respectively. Then the ML estimate is find by maximizing $\log(p_{y/x}(y/x))$:

$$\hat{X}_{ML} = (A^t R_W^{-1} A)^{-1} A^t R_W^{-1} y$$

Maximum A Posteriori (MAP) Estimator

$$\begin{aligned}\hat{X}_{MAP} &= \arg \max_{x \in \Omega} p_{x|y}(x|Y) \\ &= \arg \max_{x \in \Omega} \log p_{x|y}(x|Y) \\ &= \arg \min_{x \in \Omega} \{-\log p_{y|x}(y|x) - \log p_x(x)\}\end{aligned}$$

For $Y = AX + W$, where X and W are independent zero mean Gaussian distributed with R_X and R_W , respectively. Then the MAP or equivalently MMSE estimate is:

$$\hat{X}_{MAP} = (A^t R_W^{-1} A + R_X^{-1})^{-1} A^t R_W^{-1} y$$

Power Spectral Density (zero-mean WSS Gaussian process)

1D DTFT:

$$S_X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} R(n) e^{-j\omega n}$$

2D DSFT:

$$S_X(e^{j\omega_1}, e^{j\omega_2}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} R(m, n) e^{-j\omega_1 m - j\omega_2 n}$$

Causal Gaussian Models

$$\begin{aligned}\sigma_n^2 &\triangleq \mathbb{E}[\mathcal{E}_n^2], \hat{X} = HX, \mathcal{E} = (I - H)X = AX, \\ \mathbb{E}[\mathcal{E}\mathcal{E}^t] &= \Lambda, \Lambda = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_N^2\}\end{aligned}$$

$$\begin{aligned}p_x(x) &= |\det(A)| p_{\mathcal{E}}(Ax), |\det(A)| = 1, \\ R_X &= (A^t \Lambda^{-1} A)^{-1}\end{aligned}$$

1-D Gaussian AR models:

- Toeplitz $H_{i,j} = h_{i-j}$
- Circulant $H_{i,j} = h_{(i-j) \bmod N}$
- P^{th} order IIR filter $X_n = \mathcal{E}_n + \sum_{i=1}^P X_{n-i} h_i$, $R_{\mathcal{E}}(i-j) = \mathbb{E}[\mathcal{E}_i \mathcal{E}_j] = \sigma_c^2 \delta_{i-j}$
- $R_X(n) * (\delta_n - h_n) * (\delta_n - h_{-n}) = R_{\mathcal{E}}(n) = \sigma_c^2 \delta_n$, $S_X = \frac{\sigma_c^2}{|1 - H(\omega)|^2}$

2-D Gaussian AR:

- $\mathcal{E}_s = X_s - \sum_{r \in W_p} h_r X_{s-r}$,
- Toeplitz block Toeplitz $H_{mN+k, nN+l} = h_{m-n, k-l}$

Non-causal Gaussian Models

- $\sigma_n^2 \triangleq \mathbb{E}[\mathcal{E}_n^2 | X_i, i \neq n]$, $B_{i,j} = \frac{1}{\sigma_i^2} (\delta_{i-j} - g_{i,j})$, $\sigma_n^2 = (B_{n,n})^{-1}$, $g_{n,i} = \delta_{n-i} - \sigma_n^2 B_{n,i}$ (homogeneous: $g_{i,j} = g_{i-j}$, $\sigma_i^2 = \sigma_{NC}^2$)
- $G_{i,j} = g_{i,j}$, $\Gamma = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_N^2\}$, $B = \Gamma^{-1}(I - G)$, $\Gamma = \text{diag}(B)^{-1}$, $G = I - \Gamma B$, $\mathbb{E}[\mathcal{E}_n X_{n+k}] = \sigma_{NC}^2 \delta_k$
- $R_X(n) * (\delta_n - g_n) * (\delta_n - g_{-n}) = R_{\mathcal{E}}(n) = \sigma_{NC}^2 (\delta_n - g_n)$, $S_X = \frac{\sigma_{NC}^2}{|1 - G(\omega)|}$, $R_X(n) * (\delta_n - g_n) = \sigma_{NC}^2 \delta_n$
- **Relationship b/w AR and GMRF:** $\sigma_{NC}^2 = \frac{\sigma_c^2}{1 + \sum_{n=1}^P h_n^2}$, $g_n = \delta_n - \frac{(\delta_n - h_n) * (\delta_n - h_{-n})}{1 + \sum_{n=1}^P h_n^2} (= \frac{\rho}{1 + \rho^2} (\delta_{n-1} + \delta_{n+1}))$, $P = 1$

Surrogate Function

Our objective is to find a surrogate function $\rho(\Delta; \Delta')$, to the potential function $\rho(\Delta)$.

Maximum Curvature Method

Assume the surrogate function of the form

$$\rho(\Delta; \Delta') = \alpha_1 \Delta + \frac{\alpha_2}{2} (\Delta - \Delta')^2$$

where $\alpha_1 = \rho'(\Delta')$ and $\alpha_2 = \max_{\Delta \in \mathbb{R}} \rho''(\Delta)$.

Symmetric Bound Method

Assume that potential function is bounded by symmetric and quadratic function of Δ , then the surrogate function is

$$\rho(\Delta; \Delta') = \frac{\alpha_2}{2} \Delta^2$$

which results in the following symmetric bound surrogate function:

$$\rho(\Delta; \Delta') = \begin{cases} \frac{\rho'(\Delta')}{2\Delta'} \Delta^2 & \text{if } \Delta' \neq 0 \\ \frac{\rho'(0)}{2} \Delta^2 & \text{if } \Delta' = 0 \end{cases}$$

Review of Convexity in Optimization

Definition A.6. *Closed, Bounded, and Compact Sets*

Let $\mathcal{A} \subset \mathbb{R}^N$, then we say that \mathcal{A} is:

- **Closed** if every convergent sequence in \mathcal{A} has its limit in \mathcal{A} .
- **Bounded** if $\exists M$ such that $\forall x \in \mathcal{A}, \|x\| < M$.
- **Compact** if \mathcal{A} is both closed and bounded.

Definition A.11. Closed Functions

We say that function $f : \mathbb{R}^N \rightarrow \mathbb{R} \cup \{\infty\}$ is **closed** if for all $\alpha \in \mathbb{R}$, the sublevel set $\mathcal{A}_\alpha = \{x \in \mathbb{R}^N : f(x) \leq \alpha\}$ is closed set.

Theorem A.6. Continuity of Proper, Closed, Convex Functions

Let $f : \mathbb{R}^N \rightarrow \mathbb{R} \cup \{\infty\}$ be a proper convex function. Then f is closed if and only if it is lower semicontinuous.

Optimization Methods:

Gradient Descent: $x^{(k+1)} = x^{(k)} - \beta \nabla f(x^{(k)})$

Gradient Descent with Line Search:

$$d^{(k)} = -\nabla f(x^{(k)})$$

α solves the equation : $0 = \frac{\partial f(x^{(k)} + \alpha d^{(k)})}{\partial \alpha} = [\nabla f(x^{(k)} + \alpha d^{(k)})]^t d^{(k)}$.

Update: $x^{(k+1)} \leftarrow x^k + \alpha \frac{\|d^{(k)}\|^2}{\|d^{(k)}\|_Q^2} d^{(k)}$ where $Q = A^t \Lambda A + B$

Coordinate Descent :

$$\alpha = \frac{(y - Ax)^t \Lambda A_{*,s} - x^t B_{*,s}}{\|A_{*,s}\|_\Lambda^2 + B_{s,s}} \quad (\text{for } Y|X \sim N(AX, \Lambda^{-1}))$$

$$x_s \leftarrow x_s + \frac{(y - Ax)^t A_{*,s} - \lambda(x_s - \sum_{r \in \partial s} g_{s-r} x_r)}{\|A_{*,s}\|^2 + \lambda}, \quad \lambda = \frac{\sigma^2}{\sigma_x^2}$$

Pairwise quadratic form identity

$$x^t B x = \sum_{s \in S} a_s x_s^2 + \frac{1}{2} \sum_{s \in S} \sum_{r \in S} b_{s,r} |x_s - x_r|^2, \quad a_s = \sum_{r \in S} B_{s,r},$$

$$b_s = -B_{s,r}$$

Miscellaneous

For any invertible matrix A , 1. $\frac{\partial |A|}{\partial A} = |A| A^{-1}$ 2. $\frac{\partial \text{tr}(BA)}{\partial A} = B$ 3. $\text{tr}(AB) = \text{tr}(BA)$

Plug and Play

(non-expansive map)

(CE equations)

$$x^* = F(x^* - u^*)$$

$$x^* = H(x^* + u^*)$$

(Douglas-Rachford algorithm)

set $\rho \in (0, 1)$

initialize w_1

repeat{

$$w'_1 \leftarrow T w_1$$

$$w_1 \leftarrow (1 - \rho)w'_1 + \rho w_1$$

}

return w_1

Note that here $w_1 = x - u$, $w_2 = x + u$, and $x = \frac{w_1 + w_2}{2}$, so then $(2F - I)w_1 = w_2$. And,

$$T = (2H - I)(2F - I).$$

(Convergence of Douglas-Rachford algorithm)

When F and H are proximal maps of proper closed convex functions f and h then Douglas-Rachford algorithm converges to both the CE solution and the MAP estimate.

EM algorithm

General EM Algorithm:

$$\text{E-step : } Q(\theta; \theta^{(k)}) = \mathbb{E}[\log(p(y, X|\theta))|Y = y, \theta^{(k)}]$$

$$\text{M-step : } \theta^{(k+1)} = \arg \max_{\theta \in \Omega} Q(\theta; \theta^{(k)})$$

(ML estimate for Gaussian mixture)

$$\log p(y, x|\theta) = \sum_{n=1}^N \log p(y_n, x_n|\theta) = \sum_{n=1}^N \sum_{m=0}^{M-1} \delta(x_n = i, x_n = j|y) = \frac{\alpha_{n-1}(i) P_{i,j} f(y_n|j) \beta_n(j)}{p(y)}$$

$$m \{ \log p(y_n|\mu_m, \sigma_m) + \log \pi_m \}$$

(Exponential Family)

A family of density functions $p_\theta(y)$ for y and θ is said to be a exponential family if there exists functions $\eta(\theta)$, $s(y)$, and $d(\theta)$ and natural statistic $T(y)$ such that $p_\theta(y) = \exp\{\langle \eta(\theta), T(y) \rangle + d(\theta) + s(y)\}$

(sufficient statistic)

$T(Y)$ is a sufficient statistic for the family of distributions $p_\theta(y)$ if the density functions can be written in the form $p_\theta(y) = h(y)g(T(y), \theta)$ where g and h are any two functions.

Markov Chains

Parameter Estimation for Markov Chains: $N_j = \delta(X_0 - j)$, $K_{i,j} = \sum_{n=1}^N \delta(X_n - j) \delta(X_{n-1} - i)$

$$\log(p(x)) = \sum_{j \in \Omega} \{N_j \log(\tau_j) + \sum_{i \in \Omega} K_{i,j} \log(P_{i,j})\}$$

$$\text{ML Estimate } \hat{\tau}_j = N_j \text{ and } \hat{P}_{i,j} = \frac{K_{i,j}}{\sum_{j \in \Omega} K_{i,j}}$$

Marginal density at any time n: $\pi^{(n)} = \pi^{(0)} P^n$ and $\pi^{(\infty)} = \pi^{(0)} P^\infty$

Log likelihood of HMM (MAP Estimate):

$$\hat{x} = \arg \max_{x \in \Omega^N} \{ \log \tau_{x_0} + \sum_{n=1}^N \{ \log f(y_n|x_n) + \log P_{x_{n-1}, x_n} \} \}$$

State Sequence Estimation and Dynamic Programming:

$$L(j, n) = \max_{x_{>n}} \{ \log p(y_{>n}, x_{>n}|x_n = j) \} \text{ and } L(j, N) = 0$$

$$L(i, n-1) = \max_{j \in \Omega} \{ \log f(y_n|j) + \log P_{i,j} + L(j, n) \}$$

$$\hat{x}_0 = \arg \max_{j \in \Omega} \{ \log \tau_j + L(j, 0) \}$$

$$\hat{x}_n = \arg \max_{j \in \Omega} \{ \log P_{x_{n-1}, j} + \log f(y_n|j) + L(j, n) \}$$

State Probability and the Forward-Backward Algorithm:

$$\alpha_n(j) = p(x_n = j, y_n, y_{<n}) \quad \beta_n(j) = p(y_{>n}|x_n = j)$$

$$\alpha_n(j) = \sum_{i \in \Omega} \alpha_{n-1}(i) P_{i,j} f(y_n|j)$$

$$\beta_n(i) = \sum_{j \in \Omega} P_{i,j} f(y_{n+1}|j) \beta_{n+1}(j)$$

(Irreducible Markov Chain). A discrete-time, discrete-space homogeneous Markov chain is said to be irreducible if for all states $i, j \in \Omega$, i and j communicate.

(Communicating States). States $i, j \in \Omega$ of a discrete-time, discrete-space homogeneous Markov chain are said to communicate if there exists integers $m > 0$ and $n > 0$ such that $[P^m]_{i,j} > 0$ and $[P^n]_{j,i} > 0$.

(period of state) State $i \in \Omega$ of a discrete-time, discrete-space homogeneous Markov chain has period $d(i) = \gcd\{n \in \mathbb{N}_+ | [P^n]_{i,i} > 0\}$.

State i is aperiodic if $d(i) = 1$ and periodic if $d(i) > 1$.

Ergodic MC : $\pi_j = \lim_{n \rightarrow \infty} [P^n]_{i,j} > 0$

(detailed balance equations)

$$\pi_i P_{i,j} = \pi_j P_{j,i}$$

$$\sum_{i \in \Omega} \pi_i = 1$$

(full balance equations)

$$\pi^\infty = \pi^\infty P \text{ or } \pi_j = \sum_{i \in \Omega} \pi_i P_{i,j}$$

$$\sum_{i \in \Omega} \pi_i = 1$$

Stochastic Sampling

(inverse transform sampling)

$X \leftarrow F^{-1}(U)$ where $U \leftarrow \text{Rand}([0, 1])$ and $F^{-1}(u) = \inf\{x | F(x) \geq u\}$ generates a sample from random variable X with CDF $F(x) = P\{X \leq x\}$

(Metropolis algorithm)

initialize X^0

for k from 0 to $K - 1\{$

$U \leftarrow \text{Rand}([0, 1])$

$W \leftarrow Q^{-1}(U | X^{(k)})$

$\alpha \leftarrow \min\{1, e^{-[u(W) - u(X^{(k)})]}\}$

$U \leftarrow \text{Rand}([0, 1])$

if $U < \alpha$ then $X^{(k+1)} \leftarrow W$

else $X^{(k+1)} \leftarrow X^{(k)}$

}

Note: where $Q^{-1}(\cdot | x^{(k)})$ is the inverse CDF corresponding to proposal density $q(w | x^{(k)})$