PURDUE

ECE 64100

Midterm Exam, November 10, Fall 2023

NAME PUID

Exam instructions:
¢ A fact sheet is included at the end of this exam for your use.
¢ You have 50 minutes to work the exam.
e This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any
supplementary reference, a calculator, or any communication device including a cell-phone or computer.
¢ You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:
o Write your full name and PUID above and on the top of every page.
o Answer all questions in the area designated for each problem.
o Write only on the front of the exam pages.
e DO NOT run over to the next question.




Name/PUID:
Problem 1.(22pt) Emotional Equations

Write 50 words or less that describe your feelings and interpretation of the following equation:

P = argunin{ @) + o o1

202

Solution:

Q1:

my solution:

This is the typical form for a proximal map. The function F' typically takes inputs from R and
maps them back to the same space, RY. Intuitively, F returns a vector which moves towards the

minimum of the function f(z), but remains in the proximity of z. Hence its name.

ChatGPT prose solution:

9

The equation signifies seeking a point 'x’ that minimizes a combination of ’f(x)’ and the squared

)

distance between 'x’ and ’z,” with 'F(z)’ as the result. It’s like finding an optimal solution that

balances 'f(x)” and proximity to 'z,” often used in optimization or signal processing.

ChatGPT poem solution:

In search of 'x,” a quest unfolds so bright,

To minimize ’f(x)’ and closeness, we take flight.
'F(z)’ emerges, a beacon in the math’s night,
Balancing 'f(x)” and ’z’s proximity, our guiding light.
In optimization’s realm, it finds its might,

A signal’s secret, hidden in plain sight.



Name/PUID:
Problem 2.(36pt) MAP Estimation
Consider the following MAP estimator & = argmin, f(x)

1
20

1
f@) = ——lly — Az|]* + —|z|* ,
202, 2

0.2

where A = =%.
g

x

Problem 2a) Write the forward model corresponding to this MAP estimator.
Problem 2b) Calculate the gradient, V f(x).

Problem 2c) Calculate a closed form expression for the MAP estimate, &.
Problem 2d) Give the pseudo-code for the gradient descent algorithm.
Problem 2e) Calculate the ICD update for the i** pixel, ;.

Problem 2f) Give the pseudo-code for the ICD algorithm.
Solution:

Q2a: The associated forward model is given by

Y=Az+W
X1w

X ~ N(0,021)
W ~ N(0,621)

Q2b: The gradient is given by

1 1
Vf(z)= —UjAt(y — Ax) + PR

Q2c: For the MAP estimate, V f(x) = 0, so we have that

0=—Al(y — AZ) + \&
0=—Aly+ A'A3 + \2
0=—Aly+ (A"A+ Nz
#=(A"A+ N Aly



Q2d: The gradient descent update is given by z <— aV f(x); so the pseudo-code is given by

Initialize x
Repeat {

x4 x+ B [Al(y — Az) + Az]

2

where 8 = a0,

Q2e: Define ¢; € RP such that [e;]; = §(j — 4)., and assume the update of the i*" pixel is given by

x; < x; + «. Then we can calculate the value of o as

0=[Vf(z+ae);

0= [—(y — Ax — aA*,i)tA + Az + aei)]
0=—(y— Az — 0l ;)" Asi + A(zi + a)
0= —(y — Az)!As; + Az + o[ Asi]2 + N)

7

So the optimal value of « is given by

(y—Ax)' A —
[ Al 4 A

Q2f:
The gradient descent update is given by z <— aV f(x); so the pseudo-code is given by

Initialize x
Repeat {

For each pixel i {

(Y—Az)* A, i —Azi
A« P+A

T; < T+«

o <



This is not a required part of the answer, but the fast version is given by
Initialize x
Initialize e < y — Ax
Repeat {

For each pixel i {

et A, ;—Ax;

R 2 W [EE Y

T, — T+«

ee— A,



Name/PUID:
Problem 3.(42pt) Surrogate Functions

Consider the Poisson distributed random variable, Y, with distribution

Qve—?
po(y) = ;
y!
where 6 € [0, 00) parameterizes the distribution and y € [0,1,2,...] is a non-negative integer.

Problem 3a) Calculate a closed from expression for the negative log likelihood, — log py(y).
Problem 3b) Then calculate f(0) = —logpg(y) + C(y), so that f(6) has the simplest form.
Problem 3c) Sketch f(f) for y =1 and 6 > 0.

Problem 3d) Prove that f() is a convex function for 6 > 0.

Problem 3e) Calculate the maximum likelihood estimate of § = T(Y) as a function of Y.

Problem 3f) Calculate closed form expressions for the first and second derivatives of f(6) for

0 > 0 given by
d
9(0) = 55 1(6)

2
h(O) = 5 0)

Problem 3g) Calculate the functions a(f') and b(#') so that f(0;6’) with the form

a(d")
2

£6;0') = (0 =602 +b(0") (0 -0,

is a surrogate function for f(0) for 6 > 1.
Solution:

Q3a: The negative log likelihood is given by

—logpp(y) = —ylogh + 0 + logy! .

Q3b: The negative log likelihood can be simplified by dropping the term that does not depend on
0.

f(0)=0—ylogh .



Q3c: Plot of f(x) below

f(theta) = theta - 1 log theta

5
4.5
4
35
3
25
2
1.5
1
0.5
0

0 1 2 3 4 5 6

Q3d: Since the second derivative for § > 0 is given by

*f0) y
a2 eV

we know that f(6) must be strictly convex.

Q3e: The first derivative of f(0) is given by

o) _, v
g 6"

So setting the derivative to zero yields,
0=T(y) =y.

Q3f: The first and second derivatives are given by

o) _
do 0
f0) _y
db? 62 -
Q3g: Let g(A) and h(#) denote the first and second derivatives of f(#). Then in order for f(6;6’)

to be a surrogate function, it is enough to meet the following two conditions.

Y

(') =g(0)=1-5
no_ no_ Yy _

0= i MO =g =y

So the surrogate function is given by

£(6:0) = y(6 — ) + (1 - %) 0—0) .



ECE641 Fact Sheet

Maximum Likelihood (ML) Estimator pz(x) = |det(A)|pe (Ax), |det(A)| =1,
(Frequentist) Rx = (ATA71A)7!

. 1-D Gaussian AR models:
0 = argmaxpy(Y) = arg max log pe(Y)
€

0eQ e Toeplitz H; ;= hi_j
(2 = Vopo(Y)lp—g e Circulant H; j = h(;—jymoan
0= T(Y) th P
~ R o P order IIR filter X,, = &, + >, Xn_ihs,
0= ]EG[Q] Rg(l — j) = E[gzgj] = 0'02-51'—]'
biasg =60 — 6 varg = Ep[(0 — 0)?] o Rx(n)*(6p—hp)*(0n—h_pn) = Re(n) = 026,

MSE = Eg[(6 — 0)?] = vary + (biasg)? Sx = —For

For Y = AX + W, where X and W are independent
zero mean Gaussian distributed with Rx and Ry,
respectively. Then the ML estimate is find by maxi- o & =Xs— ¥ h X, o,

.. TEWP
mizing log(py/.(y/x)):

2-D Gaussian AR:

o Toeplitz block Toeplitz Hy, N4+k,nN+1 = Rm—n,k—1
Xy = (AtR‘jle)ilAtR‘jvly
Non-causal Gaussian Models
A .
o 02 S E[EXX;i # 0], Bij = %(6ij — gij),
02 = (Bn7n)717 In,i = 5n—1’ - U%Bn,i (homoge—

n

. — 2 _ 2
Neous: i j = Gi—j,0; = Onc)

Maximum A Posteriori (MAP) Estimator

Xsap = Y
MAP argglggpﬂy(x\ )

= argrﬂrcleaé(logpw‘y(ﬂY) e G, ;= gf’(j’ r :)diag{a%, 0’%, ._)_7?]2\[}7
. B=T"I-G), '=diag(B)"",G=1-TB
= arg min{— lo +(ylz) — log ps (x ’ ’ ’
gmin{—logpy|.(y|z) —logps(z)} E[E0 X 4] = 0200
For Y = AX + W, where X and W are independent o Rx(n) * (6n — gn) * (0n — g—n) = Re(n) =
. . . . 0.2
zero mean Gaussian distributed with Rx and Ry, 012\[0(571 — gn), Sx = #&)7 Rx(n) * (6, —

respectively. Then the MAP or equivalently MMSE

2
. . gn) = 0N05n
estimate is:

e Relationship b/w AR and GMRF: 0%, =
2

XMAP — (AtR;VIAﬁ’R)_(l)ilAtR;Vly o2
1+25:1 h% ’
J— (5n_h’n)*(6n_h’7’ﬂ) p—
Power Spectral Density gn = On — T+ 7 h2 (= 1fp2 (0n—1 +
(zero-mean WSS Gaussian process) Ont1), P=1)
1D DTFT:
Surrogate Function
Sy (el¥) = Z R(n)e—3wn Our objective is to find a surrogate function p(A; A'),
—— to the potential function p(A).

2D DSFT:
Maximum Curvature Method

Sx (71, e7%2) = Z Z R(m,n)e d@rm=J«2n  Assume the surrogate function of the form
p(A;A) = i A + %(A — )2
Causal Gaussian Models
o2 A E[€2, X = HX, £ = (I - H)X = AX, where ap = p/(A’) and ag = maxacg p”(A).
E[EEY = A, A = diag{0?,03,...,0%}



Symmetric Bound Method

Assume that potential function is bounded by sym-
metric and quadratic function of A, then the surro-
gate function is

p(A;A') = %AQ
which results in the following symmetric bound sur-
rogate function:
P;(AA//)AQ if A/ 7& 0
2O i A =0

p(A;A') = {

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A C RV, then we say that A is:
e Closed if every convergent sequence in A has
its limit in A.
e Bounded if 3M such that Vz € A, ||z||< M.
e Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RV — R U {oo} is closed
if for all @ € R, the sublevel set A, = {z € RY :
f(z) < a} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RY — R U {oo} be a proper convex func-
tion. Then f is closed if and only if it is lower semi-
continuous.

Optimization Methods:

Gradient Descent: z(Ft1) = z(k) — gV f((*))
Gradient Descent with Line Search:

dk) = —Vf(x(k))

a solves the equation : 0 = W = [Vf(z®+
ad®)]td*),

Update: z*+1) «— 2F + o
A'AA+ B

Coordinate Descent :

—Az)'AA, .—a'B. . B
= |\A)*,s||i+33,s = (for Y[X ~ N(AX, A7)

(yfA:r)f’A*,sz(ZDs*Zreasgsf'ﬁwr) _ o2
+ [ EE=Y A=

4]

(k) =
Hd““)\léd where @

Pairwise quadratic form identity
t 2,1 2
r'Br = Y agxi+s ¥ X be,|lrs—x as = X B
ses % 2,e5re8 sorl@s =], as res o
bs = *Bs,r

Miscellaneous

For any invertible matrix A, 1. %

9(BA) — B 3. tr(AB) = tr(BA)

= |A|A7T 2.



