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Name/PUID: Key
Problem 1.(25pt) Emotional Equations

Write 75 words or less that describe your feelings about and interpretation of the following equation:

⇡iPi,j = ⇡jPj,i

(You answer should be written in prose.)

Solution:

Q1: These are the detailed-balance equations for a Markov chain with stationary distribution ⇡i

and transition probabilities Pi,j . Intuitively, it means that the rate of transitions from state i to

state j equals the rate of the transitions from state j to i. If an MC is also irreducible with a finite

number of states, then: a) The MC is ergodic; b) the MC has a steady state distribution of ⇡i; and

c) the MC is reversible.
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Name/PUID:

Problem 2.(49pt) Plug-and-Play

Let x, u 2 <N , and

x
⇤ = F (x⇤ � u

⇤)

x
⇤ = H(x⇤ + u

⇤)

where

F (v) = arg min
x2<N

⇢
f(x) +

1

2�2
kx� vk2

�
,

where f : <N ! < is a continuously di↵erentiable convex function and H : <N ! < is a denoiser

assumed to be firmly non-expansive.

Furthermore, define the operator T = (2H � I)(2F � I).

2a) For only this subproblem, assume that

H(v) = argmin
x

⇢
h(x) +

1

2�2
kx� vk2

�
,

where h : <N ! < is a continuously di↵erentiable convex function.

Then prove that

rx {f(x) + h(x)}|x=x⇤ = 0 .

2b) Sketch a figure that illustrates the interpretation behind the equations

x
⇤ = F (x⇤ � u

⇤)

x
⇤ = H(x⇤ + u

⇤) .

2c) Explain in words the interpretation of the figure for 2b) above.

2d) Show that the operator T has a fixed point of w⇤
1 = x

⇤ � u
⇤.

2e) Given the solution to the fixed point equation, Tw⇤
1, find an expression for x⇤.

2f) Specify a pseudo-code algorithm that uses the Mann iteration to compute w
⇤
1.

2g) Let H✓(v) denote a family of functions parameterized by ✓ that can be used to model H(v),

and let {xk}K�1
k=0 denote a set of ground-truth images from your target application. Then describe

in detail a method for estimating the parameter vector ✓.
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Solution:

Q2a: Since f : <N ! < is a continuously di↵erentiable convex function and h : <N ! < is a

continuously di↵erentiable convex function, f(x) + 1
2�2 kx� vk2 and h(x) + 1

2�2 kx� vk2 are strictly

convex.

Then substitute v = x
⇤ � u

⇤, we have

x
⇤ = F (x⇤ � u

⇤) = arg min
x2<N

⇢
f(x) +

1

2�2
kx� x

⇤ + u
⇤k2
�

,

which leads to,

0 = rx

⇢
f(x) +

1

2�2
kx� x

⇤ + u
⇤k2
�����

x=x⇤

= rxf(x) +
1

�2
(x� x

⇤ + u
⇤)

����
x=x⇤

= rxf(x) +
1

�2
u
⇤
����
x=x⇤

.

So,

rf(x⇤) = �1
�2

u
⇤

Similarly for h, substitute v = x
⇤ + u

⇤, we have

x
⇤ = H(x⇤ + u

⇤) = arg min
x2<N

⇢
h(x) +

1

2�2
kx� x

⇤ � u
⇤k2
�

,

which leads to,

rx

⇢
h(x) +

1

2�2
kx� x

⇤ � u
⇤k2
�����

x=x⇤
= 0 .

So,

rh(x⇤) = 1

�2
u
⇤

Therefore,

rx {f(x) + h(x)}|x=x⇤ =
�1
�2

u
⇤ +

1

�2
u
⇤ = 0 .
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Q2b:

!∗ + #∗!∗ − #∗ !∗

% !∗ − #∗ & !∗ + #∗

Figure 1: Illustration of Plug-and-Play

Q2c: F (·) is the forward model agent, and H(·) is the prior model agent. At the solution (x⇤, u⇤),

the two agents are in equilibrium since they share the same output point each agent has an opposite

but equal o↵set.

Q2d: Define

w
⇤
1 = x

⇤ � u
⇤

w
⇤
2 = x

⇤ + u
⇤
.

Then we have that

(2F � I)w⇤
1 = 2

w
⇤
1 + w

⇤
2

2
� w1 = w

⇤
2 (1)

(2H � I)w⇤
2 = 2

w
⇤
1 + w

⇤
2

2
� w2 = w

⇤
1 . (2)

So substituting (??) into (??) results in

(2H � I)(2F � I)w⇤
1 = w

⇤
1 ,

which is the desired result of Tw⇤
1 = w

⇤
1. So then w

⇤
1 = x

⇤ � u
⇤ is a fixed point of T .

Q2e: We have a fixed point solution so that Tw⇤
1 = w

⇤
1. We also know that

(2F � I)w⇤
1 = 2

w
⇤
1 + w

⇤
2

2
� w1 = w

⇤
2 . (3)

We also know that

x
⇤ =

w
⇤
1 + w

⇤
2

2
.

So then we have that

x
⇤ =

w
⇤
1 + w

⇤
2

2
=

w
⇤
1 + (2F � I)w⇤

1

2
= F (w⇤

1) .
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Q2f:

For ⇢ 2 (0, 1), the Mann algorithm given by

Initialize w

Repeat{

w  (1� ⇢)w + ⇢Tw

}

Since F and H are both firmly non-expansive, then 2F � I and 2H � I are non-expansive. This

then implies that T = (2F � I)(2H � I) is non-expansive. Therefore, if a fixed point exists, then

the Mann iterations must converge to a fixed point.

Q2g:

To estimate ✓ with a set of ground-truth images {xk}K�1
k=0 . Generate training pairs (xk, zk) where

zk = xk + wk

where xk is a typical image that is expected in the application and wk is independent whit noise

with variance �
2.

Then the denoising agent H✓(z) can be trained to minimize the loss function given by

L(✓) =
X

k

kxk �H✓ (zk)k2 .
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Name/PUID:

Problem 3.(35pt) EM Algorithm

Let (X,Y ) denote random objects from the exponential family of distributions denoted by p✓(x, y)

where ✓ 2 ⌦. Furthermore, let T (X,Y ) denote the natural su�cient statistics for the distribution

where the maximum likelihood estimate has the form

✓̂ = f(T (X,Y )) .

Also, let l(✓) = log p✓(y) denote the log likelihood of the observations.

Problem 3a) Give a general formula for the Q-function, Q(✓, ✓0), in the EM update.

Problem 3b) Sketch a figure that illustrates the critical property of the Q-function, Q(✓, ✓0), in

relation to the log likelihood function, l(✓).

Problem 3c) Write a mathematical expression that specifies the critical property shown in your

sketch above.

Problem 3d) Specify in pseudo-code the general EM algorithm in terms of the Q-function.

Problem 3e) Specify in pseudo-code the general EM algorithm in terms of the function f .
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Solution:

Q3a: A general formulation for Q-function,

Q
�
✓; ✓0

�
= E

⇥
log p(y,X | ✓) | Y = y, ✓

0⇤

General EM update:

E-step : Q
�
✓; ✓(k)

�
= E

⇥
log(p(y,X | ✓)) | Y = y, ✓

(k)
⇤

M-step : ✓(k+1) = argmax✓2⌦Q
�
✓; ✓(k)

�

Q3b: Q (✓; ✓0) is a surrogate function for maximizing the log likelihood function.

Figure 2: Illustration of surrogate function

Q3c: A mathematical expression that specifies the critical property of surrogate function,

l(✓) � Q
�
✓; ✓0

�
�Q

�
✓
0; ✓0
�
+ l
�
✓
0�
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Q3d:

EM Algorithm Pseudocode:

Initialize: ✓
(0) and set k = 0

Repeat until convergence:

E-step: Q

⇣
✓; ✓(k)

⌘
= E

h
log(p(y,X | ✓)) | Y = y, ✓

(k)
i

M-step: ✓
(k+1) = argmax

✓2⌦
Q

⇣
✓; ✓(k)

⌘

k  k + 1

Q3e:

EM Algorithm Pseudocode:

Initialize: ✓
(0) and set k = 0

Repeat until convergence:

E-step: Compute the expected value of the su�cient statistics

T̄ (X,Y ) = E[T (X,Y )|✓(k)]

M-step: ✓
(k+1) = f(T̄ (X,Y ))

k  k + 1
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Name/PUID:

Problem 4.(42pt) EM Algorithm for Poisson Observations

LetXn for n = 1, · · · , N be a series of i.i.d. multinomial random variables with distribution P{Xn =

m} = ⇡m, and let Yn ⇠ Poisson{�m} be conditionally independent random variables given Xn, and

let ✓ = {⇡0,�0, · · · ,⇡M�1,�M�1} parameterizes the joint distribution.

Problem 4a) Calculate p✓(x, y), an expression for the joint probability density of {Xn, Yn}Nn=1.

Problem 4b) Calculate l(✓), an expression for the negative log likelihood from the measurements

{Xn, Yn}Nn=1.

Problem 4c) Calculate ⇡̂m, the maximum likelihood estimate of ⇡m given {Xn, Yn}Nn=1.

Problem 4d) Calculate �̂m, the maximum likelihood estimate of �m given {Xn, Yn}Nn=1.

Problem 4e) Use Bayes’ rule to calculate an expression for f(m|yn) = P{Xn = m|Yn = yn}.

Problem 4f) Specify in pseudo-code the EM algorithm for the estimation of ✓ for this specific

problem.
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Solution:

Q4a: We first calculate the joint probability density of each {Xn, Yn} pairs given by

p (xn, yn) = p (yn | xn)⇡xn =
�
yn
xne

��xn

yn!
⇡xn .

Since the Xn are independent and the Yn are independent, we have that

p(x, y) =
NY

n=1

⇢
�
yn
xne

��xn

yn!
⇡xn

�

Q4b: The negative log likelihood is given by l(✓) = � log p(x, y). In order to calculate the negative

logarithm of the given probability function p(x, y), we apply the logarithm to the product. The

negative logarithm of a product becomes the sum of the negative logarithms of the individual terms.

1. Apply the negative logarithm to the product:

� log p(x, y) = � log

 
NY

n=1

�
yn
xne

��xn

yn!
⇡xn

!

2. Convert the logarithm of a product into a sum of logarithms:

� log p(x, y) = �
NX

n=1

log

✓
�
yn
xne

��xn

yn!
⇡xn

◆

3. Apply the logarithm properties to the terms inside the sum:

� log p(x, y) = �
NX

n=1

(yn log �xn � �xn � log(yn!) + log ⇡xn)

This is the negative log likelihood from the measurements.

Q4c: The natural su�cient statistics for ✓ given (X,Y ) are

Nm =
NX

n=1

� (Xn = m)

bm =
NX

n=1

Yn� (Xn = m)

Therefore, the ML estimate of ⇡m is

⇡̂m =
Nm

N
.
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Q4d: The natural su�cient statistics for ✓ given (X,Y ) are

Nm =
NX

n=1

� (Xn = m)

bm =
NX

n=1

Yn� (Xn = m)

Therefore, the ML estimate of ⇡m is

�̂m =
bm

Nm
.

Q4e: The posterior probability calculated by Bayes’ rule,

f(m|ym, ✓) = P {Xn = m | Yn = yn}

=
P {Yn = yn | Xn = m}P {Xn = m}

PM�1
m=0 P {Yn = yn | Xn = m}P {Xn = m}

=
�yn
m e��m

yn!
⇡m

PM�1
m=0

�yn
m e��m

yn!
⇡m

=
�
yn
m e

��m⇡mPM�1
m=0 �

yn
m e��m⇡m

Q4f:

Assume we start with initiate parameter estimates of ✓̂ = {�̂m, ⇡̂m}M�1
m=0 .

The E-step:

For n = 1, · · · , N and m = 0, · · · ,M � 1 calculate the posterior probability

fn(m) =
�̂
yn
m e

��̂m ⇡̂mPM�1
m=0 �̂

yn
m e��̂m ⇡̂m

Then for m = {0, · · · ,M � 1} calculate

N̂m =
NX

n=1

fn(m)

b̂m =
NX

n=1

Ynfn(m)

The M-step:
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Then for m = {0, · · · ,M � 1} calculate

⇡̂m =
N̂m

N

�̂m =
b̂m

N̂m

And repeat until converged.
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Name/PUID:

Problem 5.(49pt) Markov Chains and Stochastic Sampling

Let u : ⌦! < be an energy function defined on ⌦ = {0, · · ·M � 1} such that

Z =
X

x2⌦
u(x) ,

and let

p(x) =
1

Z
exp{u(x)} ,

be its associated Gibbs distribution.

Further define the distribution

q(i|j) =

8
<

:

1/3 if 0 = modM (i� j)
1/3 if 1 = modM (i� j)
1/3 if M � 1 = modM (i� j)

.

Also, let Zn denote the random process generated by Zn ⇠ q(i|Zn�1).

Problem 5a) Prove that Zn is a Markov chain.

Problem 5b) Prove that Zn irreducible.

Problem 5c) Prove that Zn aperiodic.

Problem 5d) Prove that Zn is ergodic.

Problem 5e) Find the stationary distribution for Zn.

Problem 5f) Is Zn reversible? Justify your answer.

Problem 5g) Specify a pseudo-code algorithm for generating samples from the Gibbs distribution,

p(x), using the Metropolis Algorithm.
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Solution:

Q5a: Since the probability distribution of Zn only depends on Zn�1, it is a Markov chain.

Q5b: It is enough to show that for all i, j there is a finite sequence of states, (z0, · · · , zn) with

z0 = i and zn = j that occurs with probability greater than 0. To do this, observe that just choose

n so that z0 = i, z1 = modM (i + 1), z1 = modM (i + 2), ·, zn = j. Then this sequence occurs with

probability (1/3)n > 0.

Q5c: Since P0,0 >
1
3 > 0 and the Markov chain is irreducible by part Q2.2 above, then the Markov

chain is aperiodic.

Q5d: Since the Markov chain has i) finite state; ii) is irreducible; iii) is aperiodic, then it must be

ergodic.

Q5e: Choose ⇡ = [1/M, 1/M, · · · , 1/M ]. Then ⇡i satisfies the full balance equations given by

⇡P = ⇡.

So this must be the stationary distribution of the ergodic Markov chain.

Q5f: The Markov chain is reversible. In order to prove this we need to show that

⇡iPi,j = ⇡jPj,i

for all state pairs, i, j.

Case 1: Assume (i� j)modM 2 {�1, 0, 1}, then we have that

⇡iPi,j = ⇡jPj,i

1

M

1

3
=

1

M

1

3
,

so the detailed balance equations hold.

Case 2: Assume (i� j)modM 62 {�1, 0, 1}, then we have that

⇡iPi,j = ⇡jPj,i

1

M
0 =

1

M
0 ,

so again the detailed balance equations hold.

Since the detailed balance equations always hold, the Markov chain is reversible.
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Q5g:

Metropolis Algorithm for Gibbs Sampling:

Initialize: x0 ⇠ Uniform(⌦)

For n = 0 to N � 1 do:

1. Sample ! ⇠ q(i|xn)

2. Compute acceptance probability: ↵ = min (1, exp{�(u(!)� u(xn))})

3. Accept or reject:

Generate r ⇠ Uniform(0, 1)

If r < ↵ then xn+1 = ! else xn+1 = xn

End For
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ECE641 Fact Sheet

Probability Background

Total Probability
P (A) =

P
n
P (A|Bn)P (Bn)

Total Probability for Conditional Probabilities
P (A|C) =

P
n
P (A|Bn, C)P (Bn|C)

Bayes’ Rule
P (B|A) = P (A|B)P (B)

P (A)

Conditional Joint Probability
P (A,B|C) = P (A|B,C)P (B|C)

Maximum Likelihood (ML) Estimator

(Frequentist)

✓̂ = argmax
✓2⌦

p✓(Y ) = argmax
✓2⌦

log p✓(Y )

0 = r✓p✓(Y )|
✓=✓̂

✓̂ = T (Y )

✓̄ = E✓[✓̂]

bias✓ = ✓̄ � ✓ var✓ = E✓[(✓̂ � ✓̄)2]

MSE = E✓[(✓̂ � ✓)2] = var✓ + (bias✓)
2

For Y = AX +W , where X and W are independent
zero mean Gaussian distributed with RX and RW ,
respectively. Then the ML estimate is find by maxi-
mizing log(py/x(y/x)):

X̂ML = (At
R

�1
W

A)�1
A

t
R

�1
W

y

Maximum A Posteriori (MAP) Estimator

X̂MAP = argmax
x2⌦

px|y(x|Y )

= argmax
x2⌦

log px|y(x|Y )

= argmin
x2⌦

{� log py|x(y|x)� log px(x)}

For Y = AX +W , where X and W are independent
zero mean Gaussian distributed with RX and RW ,
respectively. Then the MAP or equivalently MMSE
estimate is:

X̂MAP = (At
R

�1
W

A+R
�1
X

)�1
A

t
R

�1
W

y

Power Spectral Density

(zero-mean WSS Gaussian process)

1D DTFT:

SX(ej!) =
1X

n=�1
R(n)e�j!n

2D DSFT:

SX(ej!1 , e
j!2) =

1X

m=�1

1X

n=�1
R(m,n)e�j!1m�j!2n

Causal Gaussian Models

�
2
n

�
= E[E2

n
], X̂ = HX, E = (I � H)X = AX,

E[EE t] = ⇤, ⇤ = diag{�2
1 ,�

2
2 , ...,�

2
N
}

px(x) = |det(A)|pE(Ax), |det(A)| = 1,
RX = (At⇤�1

A)�1

1-D Gaussian AR models:

• Toeplitz Hi,j = hi�j

• Circulant Hi,j = h(i�j)modN

• P
th order IIR filter Xn = En +

P
P

i=1 Xn�ihi,
RE(i� j) = E[EiEj ] = �

2
c
�i�j

• RX(n)⇤(�n�hn)⇤(�n�h�n) = RE(n) = �
2
c
�n,

SX = �
2
c

|1�H(!)|2

2-D Gaussian AR:

• Es = Xs � ⌃
r2Wp

hrXs�r,

• Toeplitz block ToeplitzHmN+k,nN+l = hm�n,k�l

Non-causal Gaussian Models

• �
2
n

�
= E[E2

n
|Xi, i 6= n], Bi,j = 1

�
2
i
(�i�j � gi,j),

�
2
n
= (Bn,n)�1, gn,i = �n�i � �

2
n
Bn,i (homoge-

neous: gi,j = gi�j ,�2
i
= �

2
NC

)

• Gi,j = gi,j , � = diag{�2
1 ,�

2
2 , ...,�

2
N
},

B = ��1(I �G), � = diag(B)�1, G = I � �B,
E[EnXn+k] = �

2
NC

�k

• RX(n) ⇤ (�n � gn) ⇤ (�n � g�n) = RE(n) =

�
2
NC

(�n � gn), SX = �
2
NC

1�G(!) , RX(n) ⇤ (�n �
gn) = �

2
NC

�n

• Relationship b/w AR and GMRF: �
2
NC

=
�
2
c

1+
PP

n=1 h2
n
,

gn = �n � (�n�hn)⇤(�n�h�n)
1+

PP
n=1 h2

n
(= ⇢

1+⇢2 (�n�1 +

�n+1), P = 1)

Surrogate Function

Our objective is to find a surrogate function ⇢(�;�0),
to the potential function ⇢(�).
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Maximum Curvature Method

Assume the surrogate function of the form

⇢(�;�0) = ↵1�+
↵2

2
(���0)2

where ↵1 = ⇢
0(�0) and ↵2 = max�2R ⇢

00(�).

Symmetric Bound Method

Assume that potential function is bounded by sym-
metric and quadratic function of �, then the surro-
gate function is

⇢(�;�0) =
↵2

2
�2

which results in the following symmetric bound sur-
rogate function:

⇢(�;�0) =

(
⇢
0(�0)
2�0 �2 if �0 6= 0
⇢
00(0)
2 �2 if �0 = 0

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A ⇢ RN , then we say that A is:

• Closed if every convergent sequence in A has
its limit in A.

• Bounded if 9M such that 8x 2 A, kxk< M .

• Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RN ! R [ {1} is closed

if for all ↵ 2 R, the sublevel set A↵ = {x 2 RN :
f(x)  ↵} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RN ! R [ {1} be a proper convex func-
tion. Then f is closed if and only if it is lower semi-
continuous.

Optimization Methods:

Gradient Descent: x
(k+1) = x

(k) � �rf(x(k))
Gradient Descent with Line Search:

d
(k) = �rf(x(k))

↵ solves the equation : 0 = @f(x(k)+↵d
(k))

@↵
= [rf(x(k)+

↵d
(k))]td(k).

Update: x
(k+1)  x

k + ↵
kd(k)k2

kd(k)k2
Q
d
(k) where Q =

A
t⇤A+B

Coordinate Descent :

↵ = (y�Ax)t⇤A⇤,s�x
t
B⇤,s

kA⇤,sk2
⇤+Bs,s

(for Y |X ⇠ N(AX,⇤�1))

xs  xs +
(y�Ax)tA⇤,s��(xs�⌃r2@sgs�rxr)

kA⇤,sk2+�
, � = �

2

�2
x

Pairwise quadratic form identity

x
t
Bx = ⌃

s2S

asx
2
s
+ 1

2 ⌃
s2S

⌃
r2S

bs,r|xs�xr|2, as = ⌃
r2S

Bs,r,

bs = �Bs,r

Miscellaneous

For any invertible matrix A, 1. @|A|
@A

= |A|A�1 2.
@tr(BA)

@A
= B 3. tr(AB) = tr(BA)

Plug and Play

(non-expansive map)

(CE equations)

x
⇤ = F (x⇤ � u

⇤)

x
⇤ = H(x⇤ + u

⇤)

(Douglas-Rachford algorithm)

set ⇢ 2 (0, 1)

initialize w1

repeat{
w

0
1  Tw1

w1  (1� ⇢)w0
1 + ⇢w1

}
return w1

Note that here w1 = x � u, w2 = x + u, and

x = w1+w2
2 , so then (2F � I)w1 = w2. And,

T = (2H � I)(2F � I).

(Convergence of Douglas-Rachford algorithm)

When F and H are proximal maps of proper

closed convex functions f and h then Douglas-

Rachford algorithm converges to both the CE

solution and the MAP estimate.
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EM algorithm

General EM Algorithm:

E-step : Q(✓; ✓(k)) = E[log(p(y,X|✓))|Y = y, ✓
(k)]

M-step : ✓(k+1) = argmax✓2⌦Q(✓; ✓(k))

(ML estimate for Gaussian mixture)

log p(y, x|✓) = ⌃N
n=1 log p(yn, xn|✓) = ⌃N

n=1⌃
M�1
m=0 �(xn�

m){log p(yn|µm,�m) + log ⇡m}

(Exponential Family)

A family of density functions p✓(y) for y and ✓

is said to be a exponential family if there exists

functions ⌘(✓), s(y), and d(✓) and natural statis-

tic T (y) such that p✓(y) = exp{h⌘(✓), T (y)i +
d(✓) + s(y)}

(su�cient statistic)

T (Y ) is a su�cient statistic for the family of dis-

tributions p✓(y) if the density functions can be

written in the form p✓(y) = h(y)g(T (y), ✓) where

g and h are any two functions.

Markov Chains

Parameter Estimation for Markov Chains: Nj =

�(X0 � j), Ki,j = ⌃N
n=1�(Xn � j)�(Xn�1 � i)

log(p(x)) =
P

j2⌦{Nj log(⌧j)+
P

i2⌦Ki,j log(Pi,j)}
ML Estimate ⌧̂j = Nj and P̂i,j =

Ki,jP
j2⌦ Ki,j

Marginal density at any time n: ⇡
(n) = ⇡

(0)
P

n

and ⇡
(1) = ⇡

(0)
P

1

Log likelihood of HMM (MAP Estimate):

x̂ = argmaxx2⌦N {log ⌧x0 + ⌃N
n=1{log f(yn|xn) +

logPxn�1,xn}}
State Sequence Estimation and Dynamic Pro-

gramming:

L(j, n) = maxx>n{log p(y>n, x>n|xn = j)} and

L(j,N) = 0

L(i, n�1) = maxj2⌦{log f(yn|j)+logPi,j+L(j, n)}
x̂0 = argmaxj2⌦{log ⌧j + L(j, 0)}

x̂n = argmaxj2⌦{logPx̂n�1,j+log f(yn|j)+L(j, n)}
State Probability and the Forward-Backward Al-

gorithm:

↵n(j) = p(xn = j, yn, y<n) �n(j) = p(y>n|xn =

j)

p(xn�1 = i, xn = j|y) = ↵n�1(i)Pi,jf(yn|j)�n(j)
p(y)

↵n(j) =
P

i2⌦ ↵n�1(i)Pi,jf(yn|j)
�n(i) =

P
j2⌦ Pi,jf(yn+1|j)�n+1(j)

(Irreducible Markov Chain). A discrete-time,

discrete-space homogeneous Markov chain is said

to be irreducible if for all states i, j 2 ⌦ , i and

j communicate.

(Communicating States). States i, j 2 ⌦ of a

discrete-time, discrete-space homogeneous Markov

chain are said to communicate if there exists in-

tegers m > 0 and n > 0 such that [Pm]i,j > 0

and [Pn]j,i > 0.

(period of state) State i 2 ⌦ of a discrete-time,

discrete-space homogeneous Markov chain has

period d(i) = gcd{n 2 N+|[Pn]i,i > 0}.
State i is aperiodic if d(i) = 1 and periodic if

d(i) > 1.

Ergodic MC : ⇡j = limn!1[Pn]i,j > 0

(detailed balance equations)

⇡iPi,j = ⇡jPj,i
P

i2⌦ ⇡i = 1

(full balance equations)

⇡
1 = ⇡

1
P or ⇡j =

P
i2⌦ ⇡iPi,j

P
i2⌦ ⇡i = 1

Stochastic Sampling

(inverse transform sampling)

X  F
�1(U) where U  Rand([0, 1]) and F

�1(u) =

inf{x|F (x) � u} generates a sample from ran-

dom variable X with CDF F (x) = P{X  x}
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(Metropolis algorithm)

initialize X
0

for k from 0 to K � 1{
U  Rand([0, 1])

W  Q
�1(U |X(k))

↵ min{1, e�[u(W )�u(X(k))]}
U  Rand([0, 1])

if U < ↵ then X
(k+1)  W

else X
(k+1)  X

(k)

}

Note: where Q
�1(·|x(k)) is the inverse CDF cor-

responding to proposal density q(w|x(k))
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