PURDUE

ECE 64100

Final Exam, December 11, Fall 2023

NAME PUID

Exam instructions:
e A fact sheet is included at the end of this exam for your use.
¢ You have 120 minutes to work the exam.
e This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any
supplementary reference, a calculator, or any communication device including a cell-phone or computer.
¢ You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:
e Write your full name and PUID above and on the top of every page.
o Answer all questions in the area designated for each problem.
o Write only on the front of the exam pages.
e DO NOT run over to the next question.




Name/PUID: Key
Problem 1.(25pt) Emotional Equations

Write 75 words or less that describe your feelings about and interpretation of the following equation:
Tl ;= miPj

(You answer should be written in prose.)

Solution:

Q1: These are the detailed-balance equations for a Markov chain with stationary distribution m;
and transition probabilities F; ;. Intuitively, it means that the rate of transitions from state i to
state j equals the rate of the transitions from state j to i. If an MC is also irreducible with a finite
number of states, then: a) The MC is ergodic; b) the MC has a steady state distribution of 7;; and
c¢) the MC is reversible.



Name/PUID:
Problem 2.(49pt) Plug-and-Play
Let z,u € RN, and

where

e

F) = arg nin { £0) + g5lle ol |

where f: RY — R is a continuously differentiable convex function and H : ®Y — R is a denoiser
assumed to be firmly non-expansive.
Furthermore, define the operator "= (2H — I)(2F — I).

2a) For only this subproblem, assume that
(v) = in ¢ h(z) ! |z — H2
H(v arg min x)+ 552 T —v ,

where h: RN — R is a continuously differentiable convex function.

Then prove that
Vo {f(@) + h(@)} ],y =0 .

2b) Sketch a figure that illustrates the interpretation behind the equations

2c) Explain in words the interpretation of the figure for 2b) above.

2d) Show that the operator T has a fixed point of wj = z* — u*.

2e) Given the solution to the fixed point equation, Twj, find an expression for z*.
2f) Specify a pseudo-code algorithm that uses the Mann iteration to compute wy.

2g) Let Hp(v) denote a family of functions parameterized by 6 that can be used to model H (v),
and let {xk}kK:_Ol denote a set of ground-truth images from your target application. Then describe

in detail a method for estimating the parameter vector 6.



Solution:

Q2a: Since f : RY — R is a continuously differentiable convex function and h : RY — R is a
continuously differentiable convex function, f(z)+ 5z || — v||? and h(z) + 51z ||z — v||* are strictly
convex.

Then substitute v = z* — u*, we have

1
¥ = F(z* —u*) = argxggi%r}v {f(:c) + ﬁﬂx —z* +u*H2} 7

which leads to,

1 * * (|12

r=x*

= Vo f(@) + 5la—at +u)

So,

Similarly for h, substitute v = x* + u*, we have

1
7" = H(z" + u*) = arg m;erjlv {h(aj) + T,z”x — g — u*HQ} 7

xe

which leads to,

1 * * (12
Va {h(m)+w||m—$ —u*| } . =0.
So,
* 1 *
Vh(z") = Su
o
Therefore,

1, 1,
Ve {f(z) +h(x)},_ e = ?u + ;u =0.



Q2b:

F(x* —u*) H(x* +u")

\

*

x*—ut x x*+u*

Figure 1: Illustration of Plug-and-Play

Q2c: F(-) is the forward model agent, and H(-) is the prior model agent. At the solution (x*,u*),
the two agents are in equilibrium since they share the same output point each agent has an opposite

but equal offset.

Q2d: Define

wl =a" —u”

wy =x" +u”

Then we have that

* *
(2F — Dt = 2% =l (1)
(2H — Tus = 2@ —wy = w} . 2)

So substituting (??) into (??) results in
(2H — I)(2F — Nwj = wi

which is the desired result of Tw] = wj. So then w] = 2* — u* is a fixed point of T'.

Q2e: We have a fixed point solution so that Tw] = w]. We also know that

wi + ws

(2F — Dywi =2

—w; = w; . (3)

We also know that
o Wi+ wj

So then we have that




Q2f:
For p € (0,1), the Mann algorithm given by

Initialize w
Repeat{

w4+ (1= pw+ pTw

Since F' and H are both firmly non-expansive, then 2F — I and 2H — [ are non-expansive. This
then implies that 7' = (2F — I)(2H — I) is non-expansive. Therefore, if a fixed point exists, then

the Mann iterations must converge to a fixed point.

Q2g:
To estimate # with a set of ground-truth images {.%k}é(:_ol. Generate training pairs (xg, zx) where

2k = Tk + Wi

where x; is a typical image that is expected in the application and wy is independent whit noise
with variance o2.

Then the denoising agent Hy(z) can be trained to minimize the loss function given by

L) =" |l — Hy (z1)]|°.
k



Name/PUID:
Problem 3.(35pt) EM Algorithm

Let (X,Y) denote random objects from the exponential family of distributions denoted by py(z,y)
where 6 € Q. Furthermore, let T'(X,Y’) denote the natural sufficient statistics for the distribution

where the maximum likelihood estimate has the form
0= f(T(X,Y)).
Also, let [(#) = log pp(y) denote the log likelihood of the observations.
Problem 3a) Give a general formula for the Q-function, Q(6,6"), in the EM update.

Problem 3b) Sketch a figure that illustrates the critical property of the Q-function, Q(6,6’), in
relation to the log likelihood function, [(0).

Problem 3c) Write a mathematical expression that specifies the critical property shown in your

sketch above.
Problem 3d) Specify in pseudo-code the general EM algorithm in terms of the Q-function.

Problem 3e) Specify in pseudo-code the general EM algorithm in terms of the function f.



Solution:

Q3a: A general formulation for Q-function,
Q(0:0') =E [logp(y, X [ 0) | Y =y, 0]

General EM update:
E-step : Q (6;0%)) = E [log(p(y, X | 6)) | Y = y,0%)]
M-step : 0*+D) = arg maxgeq Q (6; G(k))

Q3b: Q (6;6') is a surrogate function for maximizing the log likelihood function.

Figure 2: Illustration of surrogate function

Q3c: A mathematical expression that specifies the critical property of surrogate function,

1(0) > Q(6;0') —Q(6;0") +1(0)



Q3d:

EM Algorithm Pseudocode:
Initialize: ) and set k = 0
Repeat until convergence:
E-step: Q (0;6%)) = |log(p(y, X | 0)) | ¥ =y, 0"
. . k1) _ (k)
M-step: 0 arg %16&()2(@ (9, 0 )

k+—k+1

Q3e:

EM Algorithm Pseudocode:
Initialize: 8°) and set k = 0
Repeat until convergence:
E-step: Compute the expected value of the sufficient statistics
T(X,Y) =E[T(X,Y)|0%)]
M-step: 0%+ = f(T(X,Y))
k<—k+1



Name/PUID:
Problem 4.(42pt) EM Algorithm for Poisson Observations

Let X, forn =1,--- , N be a series of i.i.d. multinomial random variables with distribution P{X,, =
m} = mp, and let Y, ~ Poisson{\,,} be conditionally independent random variables given X,,, and

let @ = {mo, Ao, -+ ,mar—1, Aar—1} parameterizes the joint distribution.
Problem 4a) Calculate pg(z,y), an expression for the joint probability density of {X,,, Y, }_;.

Problem 4b) Calculate I(6), an expression for the negative log likelihood from the measurements
{Xna Yn}g:l .

Problem 4c) Calculate #,,, the maximum likelihood estimate of ,, given {X,, Y, }N_ .
Problem 4d) Calculate 5\m, the maximum likelihood estimate of A\, given {X,,, Yn}fyzl.
Problem 4e) Use Bayes’ rule to calculate an expression for f(mly,) = P{X,, = m|Y, = yn}.

Problem 4f) Specify in pseudo-code the EM algorithm for the estimation of 6 for this specific

problem.

10



Solution:

Q4a: We first calculate the joint probability density of each {X,,,Y,} pairs given by

NJn e~ Aen

Yn!
Since the X,, are independent and the Y;, are independent, we have that

N
)\%Ze_Azn
plz,y) = [ {mn}

|
ne1 Yn'

p(xnvyn) :p(yn | xn) e, = Ty

"t

Q4b: The negative log likelihood is given by () = —log p(x, y). In order to calculate the negative
logarithm of the given probability function p(z,y), we apply the logarithm to the product. The
negative logarithm of a product becomes the sum of the negative logarithms of the individual terms.

1. Apply the negative logarithm to the product:

N N e=Awn
—logp(x,y) = —log [ [] =
n=1 n
2. Convert the logarithm of a product into a sum of logarithms:
N
AJn e~ Aen
—logp(x,y) = — Y _log <y,7rxn
n=1 n
3. Apply the logarithm properties to the terms inside the sum:
N
- logp(x, y) = - Z (yn log >\xn - )\mn - log( n') + log Wzn)
n=1

This is the negative log likelihood from the measurements.

Q4c: The natural sufficient statistics for 6 given (X,Y) are

Therefore, the ML estimate of m,, is

11



Q4d: The natural sufficient statistics for 0 given (X,Y") are
N
Ny = 6(X, =m)
n=1

N
b = > _ Y06 (Xn =m)
n=1

Therefore, the ML estimate of ,, is
X =
m — N .

Q4e: The posterior probability calculated by Bayes’ rule,

fm|ym,0) = P{Xn =m | Y, = yn}
_ P{Y, =y | X, =m} P{X,, =m}
Z%;(}P{Yn = Yn | X, :m}P{Xn:m}
AUne—Am
Yn!

ZM—I Ane—Am
m=0 Yn!

Tm

Tm,
\ne=Amqp

SR

QAaf:

Assume we start with initiate parameter estimates of 6 = {5\m, frm}%:_ol.

The E-step:

Forn=1,--- ,Nand m=0,--- , M — 1 calculate the posterior probability
5\%12 e_;\mﬁ'm

Dm0 A €A o

fn(m) =

Then for m = {0,--- , M — 1} calculate
N
n=1
) N
b = > Yo fulm)
n=1

The M-step:

12



Then for m = {0,--- , M — 1} calculate

And repeat until converged.

13



Name/PUID:
Problem 5.(49pt) Markov Chains and Stochastic Sampling
Let u : © — R be an energy function defined on Q = {0,--- M — 1} such that

Z:Zu(w) ,

e

and let

pla) =  expfu(e)}

be its associated Gibbs distribution.
Further define the distribution

q(ilj) =< 1/3 if 1 =mod (i — j)

Also, let Z,, denote the random process generated by Z, ~ q(i|Z,—1).
Problem 5a) Prove that Z,, is a Markov chain.

Problem 5b) Prove that Z,, irreducible.

Problem 5c) Prove that Z,, aperiodic.

Problem 5d) Prove that Z,, is ergodic.

Problem 5e) Find the stationary distribution for Z,,.

Problem 5f) Is Z,, reversible? Justify your answer.

Problem 5g) Specify a pseudo-code algorithm for generating samples from the Gibbs distribution,
p(x), using the Metropolis Algorithm.

14



Solution:

Qba: Since the probability distribution of Z,, only depends on Z,,_1, it is a Markov chain.

Q5b: It is enough to show that for all i, there is a finite sequence of states, (zo,--- ,2,) with
zo =1 and z, = j that occurs with probability greater than 0. To do this, observe that just choose
n so that zo = 4,21 = mody (i + 1), 21 = mody(i + 2),-, 2z, = j. Then this sequence occurs with

probability (1/3)™ > 0.

Q5c: Since Py > % > 0 and the Markov chain is irreducible by part Q2.2 above, then the Markov

chain is aperiodic.

Q5d: Since the Markov chain has i) finite state; ii) is irreducible; iii) is aperiodic, then it must be

ergodic.

Q5e: Choose m = [1/M,1/M,--- ,1/M]. Then m; satisfies the full balance equations given by
TP =m.

So this must be the stationary distribution of the ergodic Markov chain.

Q>5f: The Markov chain is reversible. In order to prove this we need to show that
Tl ;= miPy

for all state pairs, i, j.

Case 1: Assume (i — j)modys € {—1,0,1}, then we have that

Tl g = milj
11 11
M3 M3’
so the detailed balance equations hold.

Case 2: Assume (i — j)mody; € {—1,0,1}, then we have that

Tl =Py

10—10
M~ M

so again the detailed balance equations hold.

Since the detailed balance equations always hold, the Markov chain is reversible.

15



Qb5g:

Metropolis Algorithm for Gibbs Sampling:
Initialize: z¢ ~ Uniform(2)
Forn=0to N —1do:
1. Sample w ~ q(i|zy,)
2. Compute acceptance probability: a = min (1, exp{—(u(w) — u(z,))})
3. Accept or reject:
Generate r ~ Uniform(0, 1)
Ifr < athen z,41 =welse xpr1 =y

End For

16



ECE641 Fact Sheet

Probability Background 2D DSFT:

Total Probability _ _ e e . .

P(A) =¥, P(A|B,)P(B,) Sx(eln,el) = 37 3 R(mynjemfomien

Total Probability for Conditional Probabilities e

P(A|C) = 22, P(A[Bn, C)P(B,|C) Causal Gaussian Models

Bayes’ Rule A ;

P(B|A) = ZABEE) 02 = R[], X = HX, £ = (I - H)X = AX
P(A) E[EEY = A, A = diag{0?,03,...,0%}

Conditional Joint Probability
() = |det(A Azx), |det(A)| =1,
P(A,B|C) = P(A|B.C)P(B|C) B A e Az 1detA)

)

Maximum Likelihood (ML) Estimator 1-D Gaussian AR models:
(HequentISt) ® TOGplitZ Hi,j = hi_]‘
6= arg rgleaécpg(Y = arg reneaé( log pe(Y) e Circulant H; j = h(;—j)moan
0= Vopo(Y)ly_; o Pi" order TIR filter X,, = &, + .1, Xy _ihi,
. B Re(i—j) =E[&E] = 026,
) 70r) i~ J) = EIEE)] = 0%,
- . o Rx(n)*(6,—hn)*(6n—h_n) = Re(n) = 025,,
0 =Eg [9] o?
. i 5y X = =HwE
blaS.g =0-0 varg = Eg[(9 — 9) ]
MSE = Eg[(6 — 0)?] = vary + (biasg)? 2-D Gaussian AR:
For Y = AX + W, where X and W are independent o & =X, — %}V he Xs—r,
zero mean Gaussian distributed with Ry and Ry, r€e
respectively. Then the ML estimate is find by maxi- o Toeplitz block Toeplitz HyN4k,nN+1 = Pm—n, k-1

mizing log(py/.(y/x)):

g — (AtR‘jle)_lAtR‘jvly Non-causAal Gaussian Models

e o) = E[E2|X;,i # n], Bij = 0%_2(51-_]- = 9i,3),

Maximum A Posteriori (MAP) Estimator 02 = (Bnn)"Y, gni = 6n_i — 02 B, (homoge-
R neous: g; j = gi,jpf = 0'12VC)

X = arg max z|Y

MAP BUES Priy(2lY) e Gij=g;;, I =diag{o?, 03,..,0%},

= arg maxlog p, (2]Y) B=T"'I-G), T =diag(B)™!, G=1-TB,
e E[&0 Xpik] = 0200k

® Rx(n) * (0n — gn) * (0n — g-n) = Re(n) =
For Y = AX + W, where X and W are independent 03000 — gn), Sx = %7 Rx(n) * (0, —
zero mean Gaussian distributed with Rx and Ry,

respectively. Then the MAP or equivalently MMSE

= arggleig{— log py| (y]z) —log pa ()}

Gn) = U?Vcén

estimate is: e Relationship b/w AR and GMRF: 0%, =
Xurap = (A'Ryf A+ BT ARy y S
On—hn)*(6n—h_n
Gn = 6n _ 1+2):}£7 =~ )(: 1fp2 ((5774,1 +
Power Spectral Density Soin). P =1) n=1 "%
(zero-mean WSS Gaussian process) ’
1D DTFT: Surrogate Function
oo
i —jwn Our objective is to find a surrogate function p(A; A’)
S J — R J ’ ’
x(e) n;oo (n)e to the potential function p(A).

17



Maximum Curvature Method

Assume the surrogate function of the form
p(A;A) = ar A + %(A — A)?
where a; = p/(A’) and @y = maxacr p”(A).

Symmetric Bound Method

Assume that potential function is bounded by sym-
metric and quadratic function of A, then the surro-
gate function is

Pl &) = A2
which results in the following symmetric bound sur-
rogate function:
AP AT A £ 0
A2 i A =0

p(A;A") = {

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A C RY, then we say that A is:
e Closed if every convergent sequence in A has
its limit in A.
e Bounded if 3M such that Vo € A, ||z||< M.
e Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RV — R U {oo} is closed
if for all @ € R, the sublevel set A, = {z € RV :
f(x) < a} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RY — R U {oo} be a proper convex func-
tion. Then f is closed if and only if it is lower semi-
continuous.

Optimization Methods:

Gradient Descent: x(Ft1) = (k) — 3V f(2(*)
Gradient Descent with Line Search:

d®) = —V f(z®)

a solves the equation : 0 = w = [Vf(z®+
ad®)]td®) .

[ ])2

- d®) where Q =

Update: D) «— 2k 4 oo
a3

A'AA + B
Coordinat;e Descent :

_ (y—Ax)’AA. s—a'B. s ~ 1
o= T4 T5+Be.c (for Y|X ~ N(AX,A™1))
y—Ax)' Ay s—AN@s—ErcosGs—rTr 2
7y 4y 4 AR Rsatenstn) J = 2
Pairwise quadratic form identity
'Br = ¥ asa?+3 ¥ 3 by ylrs—,|?, a5 = X By,
s€S seSres 7’ resS '
bs = _Bs,r
Miscellaneous
For any invertible matrix A, 1. % = |A|A7t 2.

9(BA) — B 3. tr(AB) = tr(BA)
Plug and Play

(non-expansive map)

(CE equations)
¥ = F(ax* —u")

¥ = H(z* 4+ u¥)

(Douglas-Rachford algorithm)

set p € (0,1)

initialize wq

repeatq{

w) « Tw;

wy < (1= p)wy + pwy

}

return wip

Note that here w1 = =z — u, wy = z + u, and
r = %2 5o then (2F — I)wy = wy. And,
T=(2H —I)2F —I).

(Convergence of Douglas-Rachford algorithm)
When F and H are proximal maps of proper
closed convex functions f and h then Douglas-
Rachford algorithm converges to both the CE
solution and the MAP estimate.

18



EM algorithm

General EM Algorithm:
E-step: Q(6;0%) = Ellog(p(y, X10))[Y = y,6")]
M-step : 0D = arg maxgeq Q(0; %))

(ML estimate for Gaussian mixture)

log p(y, 2/0) = SN log p(yn, 7|0) = S SM15(Ey

m){logp(yn|lu’ma Jm) + log Wm}

(Exponential Family)

A family of density functions py(y) for y and 6
is said to be a exponential family if there exists
functions 7(0), s(y), and d(#) and natural statis-
tic T'(y) such that pg(y) = exp{(n(0),T(y)) +
a(6) + s(y)}

(sufficient statistic)

T(Y) is a sufficient statistic for the family of dis-
tributions py(y) if the density functions can be
written in the form py(y) = h(y)g(T(y),0) where

g and h are any two functions.

Markov Chains

Parameter Estimation for Markov Chains: N; =

¥y, = arg maxjeqilog Py, -1 j+1log f(ynlj)+L(j,n)}
State Probability and the Forward-Backward Al-
gorithm:

an(j) = p(xn = ja y’my<n) ﬂn(ﬂ) = p(y>n|xn =
7)

(1 = i, 3y = jly) = 22100 1))

p(y)
an(f) = 2ieq n-1(0) P f(ynld)

B’ﬂ(z) = Zjeﬂ B,jf(yn—l-l’j)/@n—i-l(j)
(Irreducible Markov Chain).

discrete-space homogeneous Markov chain is said

A discrete-time,

to be irreducible if for all states 7,5 € Q , ¢ and

J communicate.

(Communicating States). States i,7 € Q of a
discrete-time, discrete-space homogeneous Markov
chain are said to communicate if there exists in-
tegers m > 0 and n > 0 such that [P™];; > 0
and [P"];; > 0.

(period of state) State i € Q of a discrete-time,
discrete-space homogeneous Markov chain has
period d(i) = ged{n € NL|[P"];; > 0}.

State ¢ is aperiodic if d(i) = 1 and periodic if
d(i) > 1.

log(p(x)) = >_jcq{N;log(mj)+> icq Ki,j log(Pi ;) YErgodic MC @ mj = limy 00 [P"]; j > 0

0(Xo —j), Kij = B30 10(Xp — §)0(Xp-1 — i)
. A 3 Kij
ML Estimate 7; = N; and P, ; = Z]T]Ku

Marginal density at any time n: 7 = 7(0)pn
and 7() = 7(0) poe

Log likelihood of HMM (MAP Estimate):

& = argmax,eqn {log 7z, + Z,jy:l{log f(ynlzn) +
log Pr,, 1z, }}

State Sequence Estimation and Dynamic Pro-
gramming:

L(j,n) = max,.,{logp(ysn,T>n|zn = j)} and
L(j,N)=0

L(i,n—1) = max;co{log f(yn|j)+log P; j+L(j,n)}

To = argmax;eo{log7; + L(4,0)}

(detailed balance equations)
TP =1y

Diicomi =1

(full balance equations)

T =7®Porwj =) . .qmibF;;

Yieq i =1
Stochastic Sampling

(inverse transform sampling)

X + F~1(U) where U + Rand([0,1]) and F~(u) =

inf{z|F(z) > u} generates a sample from ran-
dom variable X with CDF F(z) = P{X < x}

19



(Metropolis algorithm)
initialize X

for k from 0 to K — 1{

U + Rand([0,1])

W e QL (UX W)

a <+ min{1, e_[“(W)_“(X(k))]}
U < Rand([0,1])

if U < a then X*+D) « W
else XD  x (k)

}
Note: where Q71 (-|z(®)) is the inverse CDF cor-
responding to proposal density q(w|x(k))
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