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Q1
2 Points

Rules: I understand that this is an open book exam that shall be done 

within the allotted time of 180 minutes. I can use my notes, previous 

posted exams and exam solutions, and web resources. However, I will 

not communicate with any other person other than the official exam 

proctors during the exam, and I will not seek or accept help from any 

other persons other than the official proctors.

Upload a scan of your signature here:
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Q2 Reversible Markov Chains
21 Points

Let  be a homogeneous Markov chain with states 

, transition probabilities , and state distribution 

 for all . 

For the purposes of this problem, we say that  is reversible if and 

only if for all ,

Q2.1
7 Points

Prove the DBE equations are satisfied if and only if  is reversible.
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n > 0

P{X  =n i,X  =n−1 j} = P{X  =n j,X  =n−1 i}
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Q2.2
7 Points

Prove that if the DBE equations hold for some  and , then the 

FBE equations must also hold.
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Q2.3
7 Points

Assume that the DBE equations hold and that  is reversible, and 

define .

Then is it always the case that  has the following form?

If so, then prove it is true. 

Otherwise, give a counter example.

Enter your answer here
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Q3 Birth Death Processes
28 Points

Let  be a Markov chain  with states , 

transition probabilities , and initial distribution . 

Furthermore, let 
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

π  i P  i,j
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X  n

P =∞ lim  Pn→∞
n
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   ⎣⎢⎢

⎡ π

⋮
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⎤

No file chosenChoose Files



{X  }  n n=0
∞ {0, ⋯ ,M − 1}

P  i,j P{X  =0 i} = τ  i
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where , , and .

Q3.1
7 Points

Prove that  is a homogeneous Markov chain.
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Q3.2
7 Points

Prove that  is an irreducible Markov chain.
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Q3.3
7 Points

Assume that , then prove that  is reversible and find its 

stationary distribution .
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Q3.4
7 Points

For which values of  and  is  not ergodic? 

Justify your answer and provide an intuitive explanation.
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P  =i,j   
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⎨⎪⎪
⎪⎪⎪⎧ λ

μ

1 − λ − μ

1 − λ

0

if j = i + 1 and i ≥ 0
if j = i − 1 and i > 0
if j = i and i > 0
if j = i and i = 0
otherwise

λ > 0 μ > 0 λ + μ < 1

X  n
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λ < μ X  n

π  i
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Q4 Markov Random Fields
21 Points

Consider a random field  with distribution

where  is the set of neighboring pixel pairs on a finite rectangular 

lattice  and neighborhood system .

Q4.1
7 Points

Calculate the conditional probability , and use it to 

show that  is a MRF.
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Q4.2
7 Points

If , then what type of prior distribution is this?

Also, what advantages and disadvantages does this choice have?
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Q4.3
7 Points

If , then what type of prior distribution is this?

Also, what advantages and disadvantages does this choice have?
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

ρ(Δ) =  ∣Δ∣2
1 2
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Q5 EM Algorithm
28 Points

Let  be i.i.d. random variables with  for 

. Also, assume that  are conditionally 

independent Gaussian random variables given  and that the 

conditional distribution of  given  is distributed as . 

Furthermore, let  parameterize the 

distribution.

Q5.1
7 Points

What is the name of the distribution of ?

Enter your answer here

Q5.2
7 Points

If you observe both , then what is the ML estimate of ?
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Q5.3
7 Points

If you observe only , then what is the EM update for 

computing the ML estimate of ?
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Q5.4
7 Points

Does the EM algorithm always converge to a global maximum of the 

likelihood for this problem?  
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If so, why? If not, why not?
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