

EE 641 Midterm Exam
October 13, Fall 2017

Name: ANSWER Key

Instructions

The following is an in-class closed-book exam.

- This exam contains 3 problems worth a total of 100 points.
- You may not use any notes, textbooks, or calculators.
- You are allowed up to 55 minutes to complete the exam.

Good luck.

Problem 1. (35pt)

Let X_1, \dots, X_n be i.i.d. Gaussian random vectors with distribution $N(\mu, R)$ where $\mu \in \mathbb{R}^p$ and $R \in \mathbb{R}^{p \times p}$ is a symmetric positive-definite matrix, and let $X = [X_1, \dots, X_n]$ be the $p \times n$ matrix containing all the random vectors. Let $\theta = [\mu, R]$ denote the parameter vector for the distribution, and let b and S be sufficient statistics defined by

$$b = \sum_{k=1}^n X_k \quad (1)$$

$$S = \sum_{k=1}^n X_k X_k^t = X X^t. \quad (2)$$

a) Derive the following expressions for the probability density of $p(x|\theta)$.

$$p(x|\theta) = \frac{1}{(2\pi)^{np/2}} |R|^{-n/2} \exp \left\{ -\frac{1}{2} \text{tr} \{ S R^{-1} \} + b^t R^{-1} \mu - \frac{n}{2} \mu^t R^{-1} \mu \right\} \quad (3)$$

b) Compute the joint ML estimate of μ and R .

Hints: For any invertible matrix A ,

$$\frac{\partial |A|}{\partial A} = |A| A^{-1}$$

$$\frac{\partial \text{tr}(BA)}{\partial A} = B,$$

and for any two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$,

$$\text{tr}\{AB\} = \text{tr}\{BA\}.$$

Name: _____

a) $P(X|\theta) = P(X_1|\theta)P(X_2|\theta)\cdots P(X_n|\theta)$

$$\begin{aligned}
 &= \prod_{i=1}^n \frac{1}{(2\pi)^{\frac{p}{2}}} |R|^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x_i - \mu) R^{-1} (x_i - \mu) \right\} \\
 &= (2\pi)^{-np/2} |R|^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^n (x_i^T R^{-1} x_i + \mu^T R^{-1} \mu - 2 x_i^T R^{-1} \mu) \right\} \\
 &= \frac{1}{(2\pi)^{np/2}} |R|^{-n/2} \exp \left\{ -\frac{1}{2} \text{tr} \left\{ \sum_{i=1}^n x_i^T R^{-1} x_i \right\} - \frac{1}{2} \mu^T R^{-1} \mu + \sum_{i=1}^n x_i^T R^{-1} \mu \right\} \\
 &= \frac{1}{(2\pi)^{np/2}} |R|^{-n/2} \exp \left\{ -\frac{1}{2} \text{tr} \left\{ \sum_{i=1}^n x_i x_i^T R^{-1} \right\} - \frac{1}{2} \mu^T R^{-1} \mu + \sum_{i=1}^n x_i^T R^{-1} \mu \right\} \\
 &= \frac{1}{(2\pi)^{np/2}} |R|^{-n/2} \exp \left\{ -\frac{1}{2} \text{tr} \{ S R^{-1} \} + b^T R^{-1} \mu - \frac{n}{2} \mu^T R^{-1} \mu \right\} \quad \square
 \end{aligned}$$

b) Let $\hat{\mu}_{ML}, \hat{R}_{ML}$ be ML estimate for the parameters.

$$\begin{aligned}
 \hat{\mu}_{ML}, \hat{R}_{ML} &= \arg \max_{\mu, R} P(X|\theta) \\
 &= \arg \max_{\mu, R} \log P(X|\theta).
 \end{aligned}$$

$$\log P(X|\theta) = -np/2 \log(2\pi) + \frac{n}{2} \log|R| - \frac{1}{2} \text{tr} \{ S R^{-1} \} - \frac{1}{2} \mu^T R^{-1} \mu + b^T R^{-1} \mu$$

To compute ML Estimate, we need to solve:

$$\begin{cases} \frac{\partial \log P(X|\theta)}{\partial \mu} = R^{-1} b - n R^{-1} \mu = 0, \\ \frac{\partial \log P(X|\theta)}{\partial R^{-1}} = \frac{n}{2} \frac{1}{|R|} |R^{-1}| R - \frac{S}{2} + b^T \mu - \frac{n}{2} \mu^T \mu = 0 \end{cases}$$

We have

$$\begin{cases} \hat{\mu} = b/n \\ \hat{R} = S/n - \hat{\mu} \hat{\mu}^T \end{cases}$$

check Hessian Matrix P.D. so.

$$\hat{\mu}_{ML} = b/n$$

$$\hat{R}_{ML} = S/n + \hat{\mu} \hat{\mu}^T \quad \square$$

Problem 2. (35pt)

Let $X \in \mathbb{R}^N$ be an N pixel image that we would like to measure, and let $Y \in \mathbb{R}^N$ be the noisy measurements given by

$$Y = AX + W$$

where A is an $N \times N$ nonsingular matrix, W is a vector of i.i.d. Gaussian noise with $W \sim N(\mathbf{0}, \Lambda^{-1})$. Furthermore, in a Bayesian framework, assume that X is a GMRF with noncausal prediction filter g_s and noncausal prediction variance σ^2 .

- Derive an expression for the ML estimate of X .
- Derive an expression for the MAP cost function $f(x)$.
- Derive an expression for the MAP estimate of X under the assumption that X is a zero mean GMRF with inverse covariance matrix B .

$$a) P_{y|x}(Y|x) = \frac{1}{(2\pi)^{N/2}} |A|^{1/2} \exp \left\{ -\frac{1}{2} (Y - AX)^T \Lambda (Y - AX) \right\}$$

$$\hat{X}_{ML} = \arg \max_x P(Y|x) \quad \text{take derivative of } P(Y|x) \text{ and set it to zero.}$$

$$= (A^T \Lambda A)^{-1} A^T \Lambda Y = A^{-1} Y$$

$$b) \log P_{x|y}(x|Y) = \log P_{y|x}(Y|x) + \log P_x(x) - \log P_y(Y).$$

$$= -\frac{1}{2} (Y - AX)^T \Lambda (Y - AX) - \frac{1}{2} X^T B X + C(Y) \xrightarrow[\text{w.r.t } X]{\text{constant}}$$

where B is N by N MATRIX , and $B_{i,j} = \frac{1}{\sigma^2} (\delta_{i,j} - g_{i,j})$.

Then ^{MAP} Cost function $f(x)$ is defined as. (ignoring $C(Y)$)

$$f(x) = -\log P_{x|y}(x|Y) + C(Y) = \frac{1}{2} (Y - AX)^T \Lambda (Y - AX) + \frac{1}{2} X^T B X$$

$$c) X_{MAP} = \arg \min_x f(x)$$

$$= \arg \min_x \left\{ \frac{1}{2} (Y - AX)^T \Lambda (Y - AX) + \frac{1}{2} X^T B X \right\} \quad \text{take derivative w.r.t } X \text{ and set to zero}$$

$$= (A^T \Lambda A + B)^{-1} A^T \Lambda Y$$

Problem 3. (30pt)

Let $X \in \mathbb{R}^N$ have a Gibbs distribution with the form

$$p(x|\sigma) = \frac{1}{z} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho \left(\frac{x_s - x_r}{\sigma} \right) \right\} .$$

Then prove that the partition function is given by

$$\begin{aligned} z(\sigma) &= \int_{\mathbb{R}^N} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho \left(\frac{x_s - x_r}{\sigma} \right) \right\} dx \\ &= z_0 \sigma^N , \end{aligned}$$

where

$$z_0 = \int_{\mathbb{R}^N} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho(x_s - x_r) \right\} dx .$$

Problem 3. (30pt)

Let $X \in \mathbb{R}^N$ have a Gibbs distribution with the form

$$p(x|\sigma) = \frac{1}{Z} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho \left(\frac{x_s - x_r}{\sigma} \right) \right\}.$$

Then prove that the partition function is given by

$$\begin{aligned} z(\sigma) &= \int_{\mathbb{R}^N} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho \left(\frac{x_s - x_r}{\sigma} \right) \right\} dx \\ &= z_0 \sigma^N, \end{aligned}$$

where

$$z_0 = \int_{\mathbb{R}^N} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho(x_s - x_r) \right\} dx.$$

$$\begin{aligned} Z(\sigma) &= \int_{\mathbb{R}^N} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho \left(\frac{x_s - x_r}{\sigma} \right) \right\} dx \\ &= \int_{x_1} \cdots \int_{x_N} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho \left(\frac{x_s - x_r}{\sigma} \right) \right\} dx_1 \cdots dx_N \quad (\text{Let } 6x_1 = x_s) \\ &\stackrel{\text{Let}}{=} \int_{x_1} \cdots \int_{x_N} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho(x_s - x_r) \right\} dx_1 \cdots dx_N \\ &= 6^N \int_{x_1} \cdots \int_{x_N} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho(x_s - x_r) \right\} dx_1 \cdots dx_N \\ &= 6^N \cdot \int_{\mathbb{R}^N} \exp \left\{ - \sum_{\{s,r\} \in \mathcal{P}} b_{s,r} \rho(x_s - x_r) \right\} dx \\ &= z_0 6^N \quad \square \end{aligned}$$