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Chapter 1

Continous Non-Gaussian MRF
Models

• Selection of potential functions

– Nonconvex potentials

– Convex potentials

∗ Properties of convex functions

∗ Continuity of MAP estimator => convex

∗ Lp norm

· Scale invariant

· Continuously differentiable

· Strictly convex for p ≥ 1.

∗ Absolute values => L1 norm

· Total variation

· Tends to produce flat regions with sharp transitions

· Optimization can be difficult.

∗ Huber function and Generalize Huber function

· Quadratic near zero; linear far from zero

· Preserves low contrast detail

· Allows sharp edges to form

• Parameter estimation for MRFs

– Estimation of general scale parameters

– Estimation of parameters for GGMRFs
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• MAP estimation with Pair-wise Non-Gaussian prior

– Properties of convex optimization

– ICD updates and rooting functions

In the previous chapters, we have introduced the GMRF and shown how
it can be used as an image model in applications such as image restoration
or reconstruction. However, one major limitation of the GMRF is that it
does not accurately model the edges and other discontinuities that often
occur in real images. In order to overcome this limitation, we must extend
our approach to non-Gaussian models because edges are fundamentally not
Gaussian.

The purposed of this chapter is to generalize the GMRF of the previous
chapters to non-Gaussian random fields. To do this, we will introduce the
concept of a pair-wise Gibbs distribution, and show that, while it includes the
GMRF, it can be used to naturally generalize the GMRF to non-Gaussian
distributions.

1.1 Continuous MRFs Based on Pair-Wise Cliques

In natural images, neighboring pixels typically have similar values. In this
section, we develop image models with explicitly represent the probably of
a particular image in terms of the differences between neighboring pixels.
In order to do this, we first must reformulate the GMRF model so that it
is expressed in terms of pixel difference. Once this is done, we can then
generalize the GMRF model to non-Gaussian distributions.

First, let us review the concepts of neighborhood system, ∂s, and its as-
sociated pair-wise cliques, P , from Section ??. Recall, that ∂s ⊂ S is the
set of neighboring pixels to s, with the property that r ∈ ∂s if and only if
s ∈ ∂r. For a given neighborhood system, P denotes the set of all unordered
neighboring pixel pairs {s, r} such that r ∈ ∂s.

Using these conventions, the distribution of a GMRF can be written as

p(x) =
1

z
exp

{

−
1

2
xtBx

}

, (1.1)

where Br,s = 0 when r 6∈ ∂s, and z is the normalizing constant for the
distribution known as a partition function.
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We would like to rewrite this expression in a way that makes the depen-
dence on differences between neighboring pixels more explicit. To do this,
we introduce a very useful vector-matrix relationship. For any matrix B and
vector x, the following identity holds

xtBx =
∑

s∈S

asx
2
s +

1

2

∑

s∈S

∑

s∈S

bs,r|xs − xr|
2 , (1.2)

where as =
∑

s∈S Bs,r and bs,r = −Bs,r.

When used to model images, the coefficients, as are most often chosen to
be zero. By choosing as = 0, we insure that changing the mean of an image
will not change its prior probability. To see this, consider the image x and a
mean shift image, x̃ = x + 1. If as = 0, then can be easily shown that

x̃tBx̃ = xtBx ,

so the two images are equally probable.1 By dropping these terms, and using
the identity of (1.2), we get the following pair-wise GMRF distribution.2

p(x) =
1

z
exp











−
∑

{s,r}∈P

bs,r|xs − xr|
2











, (1.3)

Notice that the distribution of (1.3) is explicitly written in terms of the dif-
ferences between neighboring pixels. So if bs,r > 0, then as the squared pixel
difference |xs − xr|

2 increases, the probability decreases. This is reasonable
since we would expect nearby pixels to have similar values.

However, a limitation of the GMRF models is that it can excessively pe-
nalize the differences between neighboring pixels. This is because, in practice,
the value of |xs − xr|

2 can become very large when xs and xr fall across a
discontinuous boundary in an image.

A simple solution to this problem is to replace the function |xs − xr|
2

with a new function ρ(xs − xr), which grows less rapidly. For this purpose,
let ∆ denote the pixel difference, xs − xr. Then ρ(∆) can be any positive,

1However, it should be noted that in this case the determent of the inverse covariance matrix B becomes
zero, which is technically not allowed. However, this technical problem can always be resolved by computing
MAP estimates with as > 0 and then allowing as to go to zero.

2Again, we note the the value of the partition function, z, in this expression becomes infinite because of
the singular eigenvalue in B. However, this technical problem can be resolved by taking the limit as as → 0.
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continuous function with the following three properties.

Zero at origin: ρ(0) = 0

Symmetric: ρ(−∆) = ∆

Monotone increasing: ρ(|∆| + ǫ) ≥ ρ(|∆|) for ǫ > 0

Using this approach, we can generalize the Gaussian distribution of (1.3)
to form a new distribution which we will refer to as a pair-wise Gibbs
distribution given by

p(x) =
1

z
exp











−
∑

{s,r}∈P

bs,rρ

(

xs − xr

σx

)











, (1.4)

where we have reparameterized the distribution so that bs,r represent linear
weights, and σx is a scaling parameter that controls the range of variation in
x. So if our objective is to model images with large variations in pixel values,
then σx can be increase proportionately.

In the expression for the pair-wise Gibbs distribution, we refer to the
function ρ(∆) as a potential function, and we refer to the derivative of the
ρ′(∆) = dρ(∆)

d∆ as its associated influence function. We will later see that
the choice of potential and influence function can greatly impact the result
when a pair-wise Gibbs distribution is used as a prior model in applications
such as MAP estimation.

Importantly, the new non-Gaussian pair-wise MRF of equation (1.4) re-
tains the most important property of the original GMRF, that is each pixel,
xs, is conditionally independent of the remaining pixels given its neighbors.
To see this, we can factor the pair-wise Gibbs distribution into two portions:
the portion that depends on xs, and the portion that does not.

p(x) =
1

z
exp











−
∑

{s,r}∈P

bs,rρ(xs − xr)











=
1

z
exp







−
∑

r∈∂s

bs,rρ(xs − xr)







f(xr 6=s)

where f(xr 6=s) is some function of the pixels xr for r 6= s. Using the factored
form, we may calculate the conditional distribution of Xs given the remaining
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pixels Xr for r 6= s as

pxs|xr 6=s
(xs|xr 6=s) =

p(x)
∫

ℜ p(xs, xr 6=s)dxs
=

p(xs, xr 6=s)
∫

ℜ p(xs, xr 6=s)dxs

=
1
z exp {−

∑

r∈∂s bs,rρ(xs − xr)} f(xr 6=s)
∫

ℜ
1
z exp {−

∑

r∈∂s bs,rρ(xs − xr)} f(xr 6=s)dxs

=
exp {−

∑

r∈∂s bs,rρ(xs − xr)}
∫

ℜ exp {−
∑

r∈∂s bs,rρ(xs − xr)} dxs
.

However, since this result is only a function of xs and its neighbors, we have
that

pxs|xr 6=s
(xs|xr 6=s) = pxs|x∂s

(xs|x∂s) .

This type of local dependency in the pixels of X is very valuable. In fact, it
is valuable enough that it is worth giving it a name.

Definition: A random field, Xs for s ∈ S is said to be a Markov ran-
dom field (MRF) if for all s ∈ S, the conditional distribution of Xs is
only dependent on its neighbors, i.e.,

pxs|xr 6=s
(xs|xr 6=s) = pxs|x∂s

(xs|x∂s) ,

where x∂s denotes the set of xr such that r ∈ ∂s.

Using this definition, we may state the following very important property
of pair-wise Gibbs distributions.

Property 1.1: Pair-wise Gibbs distributions are the distributions of a
MRF) - Let Xs have a Gibbs distribution, p(x), using neighborhood system
∂s and pair-wise cliques P , then Xs is an MRF with neighborhood system
∂s, and the conditional probability of a pixel given its neighbors is given by

pxs|x∂s
(xs|x∂s) =

1

z
exp







−
∑

r∈∂s

bs,rρ(xs − xr)







. (1.5)

where z =
∫

ℜ
exp







−
∑

r∈∂s

bs,rρ(xs − xr)







dxs.
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Figure 1.1: Figure showing both potential and influence functions for the Gaussian
prior and weak-spring model. With the Gaussian prior, the influence of a pixel is
unbounded, and it increases linearly with the value of ∆. However, with the weak
spring model, the influence drops to zero when the value of |∆| exceeds a threshold.
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1.2 Selection of Potential and Influence Functions

The question remains of how to select a potential function that best models
real images? One place to start is to look at the conditional distribution of a
pixel, xs, given its neighbors, x∂s. In particular, the most probable value of
xs given its neighbors is the solution to the optimization problem,

x̂s = arg max
xs∈ℜ

pxs|x∂s
(xs|x∂s)

= arg min
xs∈ℜ

∑

r∈∂s

bs,rρ(xs − xr) , (1.6)

which can be in turn computed as the solution to the equation

∑

r∈∂s

bs,rρ
′(x̂s − xr) = 0 . (1.7)

Equation (1.6) has an interpretation of energy minimization where the terms
ρ(xs − xr) represent the potential energy associated with the two pixels xs

and xr. Alternatively, equation (1.7) has the interpretation of a force balance
equation where the terms ρ′(x̂s − xr) represent the force that the pixel xr

exerted on the estimate x̂s.

This interpretation of ρ(xs − xr) as energy, and ρ′(x̂s − xr) as force serves
as a useful tool for the design and selection of these potential functions.
In fact, the function ρ′(∆) is usually referred to as the influence function
because it determines how much influence a pixel xr has on the MAP estimate
of a pixel x̂s.

Figure 1.1 shows the potential and influence functions for two possible
choices of the potential function which we will refer to as the Gaussian and
Weak-spring potential [3, 2] functions.

Gaussian potential: ρ(∆) = |∆|2

Weak-spring potential: ρ(∆) = min
{

|∆|2, 1
}

Along with each potential function, we also show the associated influence
function, since this gives an indication of the “force” resulting from neigh-
boring pixels with different values. Notice that with the Gaussian prior, the
influence of a pixel is linearly proportional to the value of ∆ = xs−xr. There-
fore, the influence of xr on the estimate of x̂s is unbounded, and a neighboring
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pixel on the other side of an edge can have and unbounded effect on the final
estimate of x̂s.

However, with the weak spring potential, the influence of a neighboring
pixel is bounded because the potential function is clipped to the value 1. This
bounded influence of neighboring pixels is clearly shown by the associated
influence function, which goes to zero for |∆| > 1. This means that pixel
differences greater than σx have no influence on the final estimate of x̂s. If
the pixels lie across a boundary or edge in an image, this lack of influence
can be very desirable, since it minimizes any blurring and therefore preserves
the edge detail.

Figure 1.2 shows some additional potential functions with a similar nature
to the weak-spring potential. For each potential function, there is a point
beyond which the potential function stops increasing at the same rate as
a quadratic, and at this point, the influence functions magnitude begins to
decrease. While these potential functions can preserve edges better than a
GMRF model, they also tend to generate discontinuous estimates at image
boundaries which are typically perceived as undesirable visual artifacts. For
some applications, such as edge detection, this type of abrupt change at
edges can be desirable. However, in applications where the output needs to
be viewed as an physical image (i.e. photography, medical imaging, etc.),
then this type of very abrupt change can be very undesirable.

1.3 Convex Potential Functions

Appendix ?? presents some basic facts about convex functions and their use
in optimization. Using the results of this appendix, we can see that the cost
function to be optimized

f(x) = ||y − Ax||2 + λxtBx

is strictly convex and has a unique global minimum at µ(y) which is a solution
to the equation

∇f(x)|x=x̂ = 0 .

*****************

Continuous (Stable) MAP Estimation[4]
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Figure 1.2: Figure showing both potential and influence functions for a variety of
non-convex potential functions.
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Figure 1.3: Figure showing both potential and influence functions for a variety of
convex potential functions.
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• Minimum of non-convex function can change abruptly.
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• Discontinuous MAP estimate for Blake and Zisserman potential.
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• Theorem:[4] - If the log of the posterior density is strictly convex, then
the MAP estimate is a continuous function of the data.

Properties of Convex Potential Functions

• Both log cosh(∆) and Huber functions

– Quadratic for |∆| << 1

– Linear for |∆| >> 1

– Transition from quadratic to linear determines edge threshold.

• Generalized Gaussian MRF (GGMRF) functions

– Include |∆| function

– Do not require an edge threshold parameter.

– Convex and differentable for p > 1.
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1.4 Parameter Estimation for Continuous MRFs

Parameter Estimation for Continuous MRF’s

• Topics to be covered:

– Estimation of scale parameter, σ

– Estimation of temperature, T , and shape, p

ML Estimation of Scale Parameter, σ, for Continuous MRF’s [5]

• For any continuous state Gibbs distribution

p(x) =
1

Z(σ)
exp {−U(x/σ)}

the partition function has the form

Z(σ) = σNZ(1)

• Using this result the ML estimate of σ is given by

σ

N

d

dσ
U(x/σ)

∣

∣

∣

∣

∣

σ=σ̂
− 1 = 0

• This equation can be solved numerically using any root finding method.

ML Estimation of σ for GGMRF’s [10, 5]

• For a Generalized Gaussian MRF (GGMRF)

p(x) =
1

σNZ(1)
exp

{

−
1

pσp
U(x)

}

where the energy function has the property that for all α > 0

U(αx) = αpU(x)

• Then the ML estimate of σ is

σ̂ =

(

1

N
U(x)

)(1/p)

• Notice for that for the i.i.d. Gaussian case, this is

σ̂ =

√

√

√

√

1

N

∑

s
|xs|2
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Chapter 1 Problems

1. Let f : IRN → IR and g : IRN → IR be convex functions, and let A be
an N × M matrix. Prove that
a) h(x) = f(Ax) for x ∈ IRM is a convex function.
b) h(x) = f(x) + g(x) is a convex function.
c) f(x) is continuous.

2. Let f : IRN → IR be a strictly convex continuously differentiable func-
tion. Prove that if ▽f(x∗) = 0 if and only if x∗ is the unique global
minimum of f(·).

3. Find a convex function f(x1, x2) with a unique global minimum, so that
coordinate decent does not converge to the global minimum. Why?

4. Let f : IRN → IR and g : IRN → IR be convex functions, let A be
an N × M matrix, and let B be an N × N symmetric positive definite
matrix. Prove that
a) h(x) = f(Ax) for x ∈ IRM is a convex function.
b) h(x) = f(x) + g(x) is a convex function.
c) f(x) is continuous.
d) f(x) = ||x||2 is strictly convex.
e) f(x) = ||x||2B = xtBx is strictly convex.

5. Let f : IRN → IR be a strictly convex continuously differentiable func-
tion. Prove that if ▽f(x∗) = 0 if and only if x∗ is the unique global
minimum of f(·).

6. Consider the optimization problem

x̂ = arg min
x∈ℜN

{

||y − Ax||2 + λxtBx
}

where A is a nonsingular N ×N matrix, B is a positive definite N ×N

matrix, and λ > 0.
a) Show that the cost function is strictly convex.
b) Derive a closed form expression for the solution.

7. Show that the conditional probabilities of equation (?) and equation
(??) are equivalent.



EE641 Digital Image Processing II: Purdue University - January 10, 2010 15

8. Let B be any N ×N symmetric matrix, and let x by an N dimensional
vector. Let P be the set of all (unique) sets of pixel pairs

P = {{i, j} : for 0 ≤ i, j ≤ N } ,

and define ai =
∑N

j=1 Bi,j and bi,j = −Bi,j.

a) Show that the following equality holds.

xtBx =
N
∑

i=1

aix
2
i +

∑

{i,j}∈P

bi,j(xi − xj)
2

b) Use this to show the result of Property 1.1.

9. Show that the costs resulting from ICD updates forms a monotone de-
crease sequence that is bounded below.

10. Show that any local minimum of the cost function is also a global mini-
mum.

11. Use the monochrome image img04.tif as x and produce a noisy image y
by adding i.i.d. Gaussian noise with mean zero and σ2

W = 162. Approx-
imate y by truncating the pixels to the range [0, · · · 255]. Print out the
image Y .

12. Compute the MAP estimate of X using 20 iterations of ICD optimiza-
tion. Use σ2

x = σ̂2
x the ML estimate of the scale parameter computed for

p = 2, and σ2
W = 162. Print out the resulting MAP estimate.

13. Plot the cost function as a function of the iteration number for the
experiment of step 12.

14. Repeat step 12 for σ2
x = 5 ∗ σ̂2

x, and σ2
x = (1/5) ∗ σ̂2

x.

15. Compute the noncausal prediction error for the image img04.tif

ei = xi −
∑

j∈∂i

gi−jxj

and display it as an image by adding an offset of 127 to each pixel. Clip
any value which is less than 0 or greater than 255 after adding the offset
of 127.
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16. Compute σ̂ML the ML estimate of the scale parameter σ for values of p in
the range 0.1 ≤ p ≤ 2. Do not include cliques that fall across boundaries
of the image. Plot σ̂ML (not σ̂p

ML) versus p for p ranging from 0.1 to 2.
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