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Chapter 1

Causal Gaussian Models

• n ∈ [1, · · · , N ] - 1-D index set

• s ∈ S - arbitrary index set

• Xn - random process in 1 or more dimensions

• Es - causal or non-causal prediction error

• Causal notation

– H - causal predictor matrix

– A = I − H - causal predictor matrix

– E = AX = (I − H)X - causal predictor matrix

– Λ - diagonal matrix of causal prediction variances

– hi,j or hi−j - causal prediction filter

– Fn = {Xi : i < n} - past observations

– H(ω) - DTFT of causal prediction filter

• Non-causal notation

– G - non-causal predictor matrix

– B = I − G - non-causal predictor matrix

– E = BX = (I − G)X - non-causal predictor matrix

– Γ - diagonal matrix of non-causal prediction variances

– gi,j or gi−j - non-causal prediction filter

3
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– G(ω) - DTFT of causal prediction filter

Perhaps the most basic tool in modeling is prediction. Intuitively, if one
can effectively predict the behavior of something, then one must have an
accurate model of its behavior. Clearly, an accurate model can enable accu-
rate prediction, but we will demonstrate that the converse is also true: an
accurate predictor can be used to create an accurate model.

In order to model data using prediction, we must decide the order in which
prediction will occur. The simplest approach is to predict values in causal
order, starting in the past and proceeding toward the future. In this chapter,
we will show that causal prediction leads to many interesting and powerful
tools; and, perhaps most importantly, it eliminates the possibility of circular
dependencies in the prediction model.

However, the price we pay for causal prediction is that it requires that we
impose a causal ordering on the data. For some types of data, causal ordering
is quite natural. However, for images, which are the primary subject of this
book, this is typically not the case, and imposing a causal order can often
lead to artifacts in the results of processing.

1.1 Causal Prediction in Gaussian Models

Let X1, X2, · · · , XN be a discrete-time Gaussian random process. Without
loss of generality, we will assume that Xn is zero-mean, since we may always
subtract the mean from X in a preprocessing step. At any particular time n,
we may partition the random processing into three distinct portions.

The Past - Xk for 1 ≤ k < n

The Present - Xn

The Future - Xk for n < k ≤ N

Our objective is to predict the current value, Xn, from the past. As we saw
in Chapter ??, one reasonable predictor is the MMSE estimate of Xn given
by

X̂n
△
= E [Xn|Xi for i < n] .
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We will refer to X̂ as a causal predictor since it only uses the past to predict
the present value, and we define the causal prediction error as

En = Xn − X̂n .

In order to simplify notation, let Fn denote the set of past observations given
by Fn = {Xi for i < n}. Then the MMSE causal predictor of Xn can be
succinctly expressed as

X̂n = E[Xn|Fn] .

Causal prediction leads to a number of very interesting and useful prop-
erties, the first of which is listed below.

Property 1.1: Linearity of Gaussian predictor - The MMSE causal predictor
for a zero-mean Gaussian random process is a linear function of the past, i.e.

X̂n = E [Xn|Fn] =
n−1
∑

i=1

hn,iXi (1.1)

where hn,i are scalar coefficients.

This property is a direct result of the linearity of conditional expectation
for zero-mean Gaussian random vectors (Property ??.5). From this, we also
know that the prediction errors must be a linear function of the past and
present values of X.

En = Xn −
n−1
∑

i=1

hn,iXi (1.2)

Another important property of causal prediction is that the prediction
error, En, is uncorrelated from all past values of Xi for i < n.

E[XiEn] = E
[

Xi(Xn − X̂n)
]

= E[XiXn] − E
[

XiX̂n

]

= E[XiXn] − E
[

XiE[Xn|Fn]
]

= E[XiXn] − E
[

E[XiXn|Fn]
]

= E[XiXn] − E[XiXn]

= 0

Notice that the fourth equality is a result of Property ??.4, and the fifth
equality is a result of Property ??.3. Since both X and E are jointly Gaussian,
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this result implies that the prediction errors are independent of past values
of X, which is stated in the following property.

Property 1.2: Independence of causal Gaussian prediction errors from past -
The MMSE causal prediction errors for a zero-mean Gaussian random process
are independent of the past of the random process. Formally, we write that
for all n

En ⊥⊥ (X0, · · · , Xn−1) ,

where the symbol ⊥⊥ indicates that the two quantities on the left and right
are jointly independent of each other.

A similar approach can be used to compute the correlation between pre-
dictions errors themselves. If we assume that i < n, then the correlation of
prediction errors is given by

E[EnEi] = E
[(

Xn − X̂n

) (

Xi − X̂i

)]

= E
[

(Xn − E[Xn|Fn]) (Xi − E[Xi|Fi])
]

= E
[

E
[

(Xn − E[Xn|Fn]) (Xi − E[Xi|Fi])
∣

∣

∣

∣

Fn

]]

= E
[

(Xi − E[Xi|Fi]) E
[

(Xn − E[Xn|Fn])
∣

∣

∣

∣

Fn

]]

= E[(Xi − E[Xi|Fi]) (E[Xn|Fn] − E[Xn|Fn])]

= E[(Xi − E[Xi|Fi]) 0] = 0 .

By symmetry, this result must also hold for i > n. Also, since we know that
the prediction errors are jointly Gaussian, we can therefore conclude joint
independence from this result.

Property 1.3: Joint independence of causal Gaussian prediction errors -
The MMSE prediction errors for a zero-mean Gaussian random process are
jointly independent which implies that for all i 6= j, Ei ⊥⊥ Ej.

The causal prediction errors are independent, but we do not know their
variance. So we denote the causal prediction variance for Xn as

σ2
n

△
= E

[

E2
n

]

.

The prediction equations of (1.1) and (1.2) can be compactly expressed us-
ing vector-matrix notation. To do this, we let X, X̂, and E denote column vec-
tors with elements indexed form 1 to N . So for example, X = [X1, · · · , XN ]t.
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Then the causal prediction equation of (1.1) becomes

X̂ = HX (1.3)

where H is an N ×N causal prediction matrix containing the prediction
coefficients, hi,j. By relating the entries of H to the coefficients of (1.1), we
can see that H is a lower triangular matrix with zeros on the diagonal and
with the following specific form.

H =























0 0 · · · 0
h2,1 0 0 · · · 0
...

... . . . . . . ...
hN−1,1 hN−1,2 · · · 0 0
hN,1 hN,2 · · · hN,N−1 0























Using this notation, the causal prediction error is then given by

E = (I − H)X = AX , (1.4)

where A = I − H.

1.2 Density Functions Based on Causal Predication

We can derive compact expressions for the density of both the prediction
error, E , and the data, X, by using the vector-matrix notation of the previous
section. To do this, first define Λ = diag

{

σ2
1, · · · , σ2

N

}

to be a diagonal matrix
containing the causal prediction variances. Then the covariance of E is given
by

E
[

EE t
]

= Λ

due to the independence of the prediction errors. Using the general form of
the density function for a zero-mean multivariate Gaussian random vector,
we then can write the density function for E as

pE(e) =
1

(2π)N/2
|Λ|−1/2 exp

{

−1

2
etΛ−1e

}

. (1.5)

Since E and X are related through a bijective transformation, it can be
easily shown that the density of X is proportional to the density of E , with
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Xn-2 Xn-1 Xn Xn+1 Xn+2Xn-3 Xn+3

H(ejω)
+

-

en

Figure 1.1: Diagram of a causal predictor for a P th order Gaussian AR process.
The linear time-invariant prediction filter, hn, has frequency response, H(ω). The
resulting prediction errors, En, are white when the predictor is optimal.

the absolute value of the Jacobian determinant of the transformation serving
as the constant of proportionality. For this particular linear relationship
between X and E , the probability densities are related by

px(x) = |det(A)| pE(Ax)

where |det(A)| is the absolute value of the determinant of the matrix A.
Fortunately, because A is a causal predictor, it is constrained to be lower tri-
angular with 1’s on its diagonal. Therefore, its determinant is one. Applying
this result, and using the form of the density function for pE(e) of (1.5) yields

px(x) =
1

(2π)N/2
|Λ|−1/2 exp

{

−1

2
xtAtΛ−1Ax

}

. (1.6)

From this, we can also see that the covariance of X is given by

Rx = (AtΛ−1A)−1 ,

where A is the causal prediction matrix and Λ is the diagonal matrix of causal
prediction variances.

1.3 1-D Gaussian Autoregressive (AR) Models

Time invariance is a very important concept that plays an essential role in
the modeling of data. This is because in many practical cases it is reasonable
to assume that the characteristic behavior of data does not change with time.
One method for enforcing time-invariance in a random processes is to specify
that the parameters of the model not change with time. When this is the
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H =



















h0 h1 · · · hN−2 hN−1

h
−1 h0 · · · hN−3 hN−2

...
...

. . .
...

...
h2−N h3−N · · · h0 h1

h1−N h2−N · · · hN−1 h0



















H =



















h0 h1 · · · hN−2 hN−1

hN−1 h0 · · · hN−3 hN−2

...
...

. . .
...

...
h2 h3 · · · h0 h1

h1 h2 · · · hN−1 h0



















Toeplitz Circulant

Figure 1.2: Diagram illustrating the structure of N ×N Toeplitz and circulant matri-
ces. Toeplitz matrices represent truncated convolution in time, and circulant matrices
represent circular convolution in time.

case, we say that the model is homogeneous. So for example, a causal
prediction model is homogeneous if the prediction filter and the prediction
variance do not change with time. In this case, the MMSE causal predictor
must be a linear time-invariant filter, so that the predictions are given by

X̂n =
N
∑

i=1

hn−iXi ,

where hn is a causal prediction filter and the causal prediction variances
take on a constant value of σ2

C .

When the prediction filter is time invariant, then the prediction matrices,
H and A, of equations (1.3) and (1.4) are said to be Toeplitz. A matrix is
Toeplitz if there is a function, hn, so that Hi,j = hi−j. The structure of a
Toeplitz matrix is illustrated in Fig. 1.2. Intuitively, each row of a Toeplitz
matrix is a shifted version of a single 1-D function, and multiplication by a
Toeplitz matrix is essentially time-invariant convolution, but using truncated
boundary conditions. Toeplitz matrices arise in many applications, and their
spatial structure sometimes presents computational advantages.

In the same way that Toeplitz matrices arise from convolution with trun-
cated boundaries, circulant matrices arise when convolution is implemented
with circular boundary conditions. In this case, Hi,j = hnmodN where n mod N

refers to modulo arithmetic. Multiplication by a circulant matrix, H, is equiv-
alent to circular convolution with the function hn. Circulant matrices have
many useful properties because we know that circular convolution can be im-
plemented with multiplication after taking the discrete Fourier transform
(DFT) of a signal.

A simple way to get around problems with boundary conditions is to
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extend the random process Xn so that n = −∞, · · · ,−1, 0, 1, · · · ,∞. When
the signal has infinite extent, then we can use the standard notation of linear
time-invariant systems. In this case,

En = Xn − X̂n

= Xn − Xn ∗ hn

= Xn ∗ (δn − hn) , (1.7)

where ∗ denotes 1-D discrete-time convolution. Turning things around, we
may also write

Xn = En + Xn ∗ hn

= En +
P
∑

i=1

Xn−ihi , (1.8)

which is the form of a P th order infinite impulse response (IIR) filter.

When P = ∞, then all past values of Xn can be used in the MMSE
prediction. However if P < ∞, then the prediction only depends on the last
P observations, and we call X an autoregressive (AR) random process.
Figure 1.3 shows how the predictor in an order P AR model only depends
on the P past neighbors.

Equation (1.8) is sometimes called a white noise driven model for the
AR process because it has the form of an LTI system with a white noise
input, En. The white noise driven model is particularly useful because it
provides an easy method for generating an AR process, Xn. To do this, one
simply generates a sequence of i.i.d. of N(0, σ2

C) Gaussian random variables,
and filters them with the IIR filter of equation (1.8). If the IIR filter is stable,
then its output, Xn, will be a stationary random process.

We can calculate the autocorrelation of the AR process, Xn, by using the
relationship of equation (1.8). Since the prediction errors, En, are i.i.d., we
know that their time autocorrelation is given by

RE(i − j) = E[EiEj] = σ2
Cδi−j .

From the results of Chapter ?? and the relationship of equation (1.7), we know
that the autocorrelation of Xn obeys the following important relationship

RX(n) ∗ (δn − hn) ∗ (δn − h−n) = RE(i − j) = σ2
Cδn . (1.9)
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From equation (1.9) we can calculate the power spectrum of the AR pro-
cess by computing the DTFT of the time autocorrelation.

SX(ω) =
σ2

C

|1 − H(ω)|2 . (1.10)

Example 1.1: Consider the P th order AR random process X1, · · · , XN with
prediction variance of σ2

C and prediction errors given by

En = Xn −
P
∑

i=1

hiXn−i . (1.11)

To simplify notation, we will assume that Xn = 0 when n < 0, so that we do
not need to use special indexing at the boundaries of the signal.

Our task in this example is to compute the joint ML estimate of the
prediction filter, hn, and the prediction variance, σ2

C . To do this, we first
must compute the probability density of X. Using the PDF of equation
(1.6), we can write the density for the AR process as

p(x) =
1

(2πσ2
C)N/2

exp











− 1

2σ2
C

N
∑

n=1



xn −
P
∑

i=1

hixn−i





2










.

We can further simplify the expression by defining the parameter vectors

h = [h1, h2, · · · , hP ]t

Zn = [Xn−1, Xn−2, · · · , Xn−P ]t .

Then the log likelihood of the observations, X, can be written as

log p(X) = −N

2
log

(

2πσ2
C

)

− 1

2σ2
C

N
∑

n=1



Xn −
P
∑

i=1

hiXn−i





2

= −N

2
log

(

2πσ2
C

)

− 1

2σ2
C

N
∑

n=1

(

Xn − htZn

) (

Xn − htZn

)t

= −N

2
log

(

2πσ2
C

)

− 1

2σ2
C

N
∑

n=1

(

X2
n − 2htZnXn + htZnZ

t
nh
)

Using this, we can express the log likelihood as

log p(X) = −N

2
log

(

2πσ2
C

)

− N

2σ2
C

(

σ̂2
x − 2htb̂ + htR̂h

)
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where

σ̂2
x =

1

N

N
∑

n=1

X2
n

b̂ =
1

N

N
∑

n=1

ZnXn

R̂ =
1

N

N
∑

n=1

ZnZ
t
n .

Notice that σ̂2
x, b̂, and R̂ are sample statistics taken from the data, X. The

three values represent the variance of Xn, the cross-correlation between Zn

and Xn, and the covariance of Zn, respectively.

First, we compute the ML estimate of the prediction filter by taking the
gradient with respect to the filter vector h.

∇h log p(X) = − N

2σ2
C

∇h

(

htR̂h − 2htb̂
)

= −N

σ2
C

(

htR̂ − b̂t
)

,

where we use the convention that the gradient is represented as a row vector.
Setting the gradient of the log likelihood to zero, results in the ML estimate
of the prediction filter, h.

ĥ = R̂−1b̂

We can next compute the ML estimate of σ2
C by plugging in the expression

for the ML estimate of h, and differentiating with respect to the parameter
σ2

C .

d

dσ2
C

log p(X) =
d

dσ2
C



−N

2
log

(

2πσ2
C

)

− N

2σ2
C

(

σ̂2
x − b̂tR̂−1b̂

)





= −N

2





1

σ2
C

− 1

σ4
C

(

σ̂2
x − b̂tR̂−1b̂

)



 .

Setting the derivative of the log likelihood to zero, results in the expression

1 − 1

σ̂2
C

(

σ̂2
x − b̂tR̂−1b̂

)

= 0

Which yields the ML estimate of the causal prediction variance given by

σ̂2
C = σ̂2

x − b̂tR̂−1b̂ .
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Perhaps a more intuitive representation for σ̂2
C is as the average of the squared

prediction errors.

σ̂2
C =

1

N

N
∑

n=1

(

Xn − ĥtZn

)2

=
1

N

N
∑

n=1

E2
n

1.4 2-D Gaussian AR Models

In fact, the analysis of 1-D AR models from the previous sections is easily
generalized to a regular grid in 2 or more dimensions. To do this, each lattice
point is represented by s = (s1, s2), where s is a vector index with each
coordinate taking on values in the range 1 to N .

The key issue in generalizing the AR model to 2-D is the ordering of the
points in the plane. Of course, there is no truly natural ordering of the
points, but a common choice is raster ordering, going left to right and top
to bottom in much the same way that one reads a page of English text. Using
this ordering, the pixels of the image, Xs, may be formed into a vector as

X = [X1,1, · · · , X1,N , X2,1, · · · , X2,N , · · · , XN,1, · · · , XN,N ]t ,

and the causal prediction errors, E , may be similarly ordered. In this case,
the 2-D causal prediction error is again given by

Es = Xs −
∑

r∈W

hrXs−r ,

where W is a window of past pixels in 2-D. Typically, this set is given by

W = {r = (r1, r2) : 1 ≤ r2 ≤ P or (r2 = 0 and 1 ≤ r1 ≤ P )} .

Notice that this definition of W only contains previous pixels in raster order.
The resulting asymmetric window shown in Figure 1.3 contains a total of
2P (P + 1) pixels. The window is not symmetric because it is constrained by
the raster ordering.

Using this convention, the prediction errors can be expressed in matrix
form as

E = (I − H)X ,
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• • ⊗
• • • • •
• • • • •
• • ⊗

1-D AR order P = 2 2-D AR order P = 2

Figure 1.3: Structure of 1-D and 2-D AR prediction window for an order P = 2
models. The pixel denoted by the symbol ⊗ is predicted using the past values denoted
by the symbol •. For the 1-D case, P = 2 past values are used by the predictor, and
for the 2-D case, 2P (P + 1) = 12 past values are used by the predictor. Notice that
the asymmetric shape of the 2-D prediction window results from raster ordering of
the pixels.

H =

















H0 H1 · · · HN−1

H
−1 H0 · · · HN−2

...
...

. . .
...

H1−N H2−N · · · H0

















Hk =













hk,0 hk,1 · · · hk,N−1

hk,−1 hk,0 · · · hk,N−2

...
...

. . .
...

hk,1−N hk,2−N · · · hk,0













Figure 1.4: Diagram illustrating the structure of a Toeplitz block Toeplitz matrix.
The N2 × N2 matrix is made up of blocks which are each of size N × N . Notice
that the blocks are organized in a Toeplitz structure, and each block, Hk , is itself
Toeplitz.

where H is the 2-D prediction matrix.

Since H represents application of a linear space-invariant 2-D filter, it has
a special structure and is referred to as a Toeplitz block Toeplitz matrix.
Figure 1.4 illustrates the structure graphically. Notice that the matrix H is
formed by a set of N ×N blocks, Hk, organized in a Toeplitz structure. Each
individual block is itself a Toeplitz matrix, which explains the terminology.
Formally, the Toeplitz block Toeplitz structure means that the entries of the
matrix, Hi,j, must obey the constraint

HmN+k,nN+l = hm−n,k−l

where in this case, hi,j is the 2-D prediction filters impulse response. Intu-
itively, the Toeplitz block Toeplitz results whenever space-invariant filters are
represented as matrix operators and the pixels in the image are organized in
raster ordering.

The 2-D AR model also has properties quite similar to the 1-D case. In
fact, the results are formally identical, only with 1-D convolution being re-
place by 2-D convolution and the 1-D DTFT being replaced by the 2-D
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discrete-space Fourier Transform (DSFT). More specifically,

RX(s) ∗ (δs − hs) ∗ (δs − h−s) = σ2
Cδs , (1.12)

where ∗ denotes 2-D convolution of 2-D functions, and

SX(µ, ν) =
σ2

C

|1 − H(µ, ν)|2
. (1.13)

where H(µ, ν) is the DSFT of hs, and SX(µ, ν) is the 2-D power spectral
density of the AR process.

• Show figure (part b) illustrating example 2-D AR process.

– Point out anisotropic behavior.

– Motivate next sections theme of removing causal prediction.
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Chapter 1 Problems

1. Let {Xn}N
n=1 be a 1-D Gaussian random process such that

En = Xn −
n−1
∑

i=n−p

hn−iXi

results in En being i.i.d. N(0, σ2) random variables for n = 1, · · · , N ,
and assume that Xn = 0 for n ≤ 0. Compute the ML estimates of the
prediction filter hn and the prediction variance σ2.

2. Let Xn be samples of an AR process with order P and parameters (σ2, h).
Also make the assumption that Xn = 0 for n ≤ 0.

a) Use matlab to generate 100 samples of Y . Experiment with a variety
of values for P and (σ2, h). Plot your output for each experiment.

b) Use your sample values of X generated in part a) to compute the ML
estimates of the (σ2, h), and compare them to the true values.

3. Let X be a 1-D AR process with hn = ρδn−1 and prediction variance σ2.

a) Analytically calculate Sx(ω), the power spectrum of X, and Rx(n),
the autocorrelation function for X.

a) Plot Sx(ω) and Rx(n) for ρ = 0.5 and ρ = 0.95.

4. Let Xn be a zero-mean wide sense stationary random process, and define

Zn =











Xn−1
...

Xn−P











for some fixed order P , and let

R = E





1

N

N−1
∑

n=0

ZnZ
t
n





a) Show that R is a Toeplitz matrix.

b) Show that R is a positive semi-definite matrix.

5. Consider a LTI system with input xn, output, yn, and impulse response,
hn, so that yn = hn ∗ xn, where ∗ denotes convolution. Also define the
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vectors, y = [y0, · · · , yN−1]
t, and x = [x0, · · · , xN−1]

t. Show that if xn = 0
for n ≤ 0 and n > N , then

y = Ax

where A is a Toeplitz matrix.

6. Consider a linear system with input {xn}N−1
n=0 , output, {yn}N−1

n=0 , and
impulse response, {hn}N−1

n=0 , so that yn = hn ∗ xn, where ∗ denotes
circular convolution. Also define the vectors, y = [y0, · · · , yN−1]

t, and
x = [x0, · · · , xN−1]

t. Show that if xn = 0 for n ≤ 0 and n > N , then

y = Ax

where A is a circulant matrix.

7. Let A be an N × N circulant matrix, so that Ai,j = hnmodN , for some
real-valued stable function hn. Furthermore, let

Tm,n = ej 2πmn

N

be the N dimensional DFT.

a) Show that inverse transformation is given by

[

T−1
]

m,n
=

1

N
ej−2πmn

N

where T−1 is the inverse DFT.

b) Show that Λ = TAT−1 is a diagonal matrix with entrees given by
the DFT of the function hn. That is Λ = diag {λ1, · · · , λN} where λm =
∑N

n=1 Tm,nhn.

c) Show that the logarithm of the determinant of the matrix A is given
by

log |A| =
N
∑

n=1

log |λn| ,

where λn the N-point DFT of hn.

d) Show that in the limit at N → ∞,

lim
N→∞

1

N
log |A| =

1

2π

∫ π

−π
log |H(ω)|dω .

where H(ω) =
∑∞

n=0 hne
jωn is the DTFT of hn.
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8. Let Xm,n be a zero-mean 2-D AR Gaussian random process with hm,n =
ρδm−1 + ρδn−1 − ρ2δm−1δn−1 and prediction variance σ2.

a) Calculate and expression for E
[

|Xm,n|2
]

, and determine the value of

σ2 so that E
[

|Xm,n|2
]

= 1.

b) Analytically calculate Sx(µ, ν), the power spectrum of X.

c) Use matlab to generate a 512× 512 sample of Y . Use the value of σ2

from a) so that E
[

|Xm,n|2
]

= 1, and use ρ = 0.9.

c) Repeat part b) for ρ = 0.5 and ρ = 0.98.

d) Plot Sx(µ, ν) for ρ = 0.9.

9. Consider a 2-D LTI system with input xm,n, output, ym,n, and impulse re-
sponse, hm,n, so that ym,n = hm,n∗xm,n, where ∗ denotes 2-D convolution.
Also define the vectors, y = [y1,1, · · · , y1,N , y2,1, · · · , y2,N , · · · , yN,1, · · · , yN,N ]t,
and x = [x1,1, · · · , x1,N , x2,1, · · · , x2,N , · · · , xN,1, · · · , xN,N ]t. Show that if
xm,n = 0 for m < 1 or m > N or n < 1 or m > N , then

y = Ax

where A is a Toeplitz block Toeplitz matrix.

10. Add problem on 2-D AR processes. Show that number of auto-
correlation lags is greater than number of prediction coefficients +1 (for
prediction variance). Show that this implies that the covariance corre-
sponding to a set of ML parameters is not unique.



Chapter 2

Non-Causal Gaussian Models

One disadvantage of AR processes is that their construction depends on a
causal ordering of points in time. For many applications, it is completely
reasonable to order points into the future, present, and past. For example,
in real-time processing of audio signals, this is a very natural organization
of the data. But sometimes, our measurements have no natural ordering.
For example, the temperatures measured along a road, are a 1-D signal, but
the direction of causality is not well defined. Which end of the road should
represent the past and which the future?

While this example may seem a bit contrived, the problem of ordering
points becomes much more sever for pixels in an image. In practical imaging
applications, such as video communications, it is often necessary to impose a
raster ordering on pixels in an image, but subsequent 1-D processing of the
ordered pixels is likely to produce artifacts aligned with the raster pattern.
The objective of this section is to introduce the basic tools that we will
need to remove causality from the modeling of images, and thereby avoid the
introduction of related artifacts.

2.1 Non-Causal Prediction in Gaussian Models

In order to introduce the concepts of modeling with non-causal prediction, we
will start with the case of 1-D signals. Let X1, · · · , XN again be a zero-mean
discrete-time Gaussian random process. Rather than use causal prediction,
we will attempt to model Xn using predictions based on a combination of

19
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Xn-2 Xn-1 Xn Xn+1 Xn+2Xn-3 Xn+3

G(ejω)
+

-

en

Figure 2.1: Diagram of a non-causal predictor for a P th order 1-D Gaussian Markov
random field. The linear time-invariant prediction filter, gn, is symmetric and has
frequency response, G(ω). In this case, the resulting prediction errors, En, are not
white when the predictor is optimal.
1.1

past and future information. In this case, the MMSE predictor is

X̂n = E[Xn|Xi for i 6= n]

As with the causal predictor, the non-causal predictor is a linear function
of the data when the random process is zero-mean and Gaussian. So the
non-causal prediction error can be written as

En = Xn −
N
∑

i=1

gn,iXi

where gn,n = 0 for all 1 ≤ n ≤ N . This condition that gn,n = 0 is very
important. Otherwise, the value Xn could be used to predict Xn perfectly!
In addition, we define σ2

n to be the non-causal prediction variance given by

σ2
n = E

[

E2
n|Xi for i 6= n

]

.

Notice that because Xn is jointly Gaussian, we know from Example ??.1
that the prediction variance is not a function of Xi for i 6= n; however, it
may depend on the time index, n.

As in the case of causal predictors, non-causal predictors have a number of
important properties. First, the non-causal prediction errors are independent
of the values used in prediction.

Property 2.1: Independence of non-causal Gaussian prediction errors from

past and future - The MMSE non-causal prediction errors for a zero-mean
Gaussian random process are independent of the past and future of the ran-
dom process.

En ⊥⊥ {Xi}i6=n .
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Unfortunately, one very important property is lost when using non-causal
prediction. In general, the non-causal prediction errors are no longer uncor-
related and independent. This is a great loss because the independence of the
causal prediction errors was essential for the computation of the probability
density of the random process in Section 1.2.

2.2 Density Functions Based on Non-Causal Predic-

tion

Although the non-causal prediction errors are not independent, we will still
be able to calculate the probability density for Xn by using vector-matrix
operations, but with a somewhat different strategy. Since X is a zero-mean
Gaussian random vector, it must have a density function with the form

p(x) =
1

(2π)N/2
|B|1/2 exp

{

−1

2
xtBx

}

,

where B is the inverse autocorrelation matrix of X. Furthermore, we know
that we can write the conditional distribution of Xn given all the remaining
Xi for i 6= n as

p(xn|xi for i 6= n) =
1

√

2πσ2
n

exp











− 1

2σ2
n



xn −
N
∑

i=1

gn,ixi





2










(2.1)

where σ2
n is the non-causal prediction variance for Xn. Our objective is to

determine the matrix B in terms of the parameters of the non-causal predic-
tion filter, gn,i, and variance, σ2

n. We can do this by setting the derivatives of
the log likelihoods equal for these two densities.

d

dxn
log p(xn|xi for i 6= n) =

d

dxn
log p(x)

1

σ2
n



xn −
N
∑

i=1

gn,ixi



 =
N
∑

i=1

Bn,ixi

Since this relations must hold for all x and all n, the inverse covariance matrix,
B, must be given by

Bi,j =
1

σ2
i

(δi−j − gi,j) .
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Alternatively, we can use this relationship to compute the MMSE non-causal
predictor parameters given a specification of B.

σ2
n = (Bn,n)

−1

gn,i = δi−j − σ2
nBn,i .

These relationships can be more compactly represented using matrix no-
tation. If we define the matrix Gi,j = gi,j as the non–causal prediction
matrix, Γ = diag

{

σ2
1, · · · , σ2

N

}

as the diagonal matrix of non-causal pre-
diction variances, and E as the column vector of non-causal prediction
errors, then we have that E = (I − G)X, and

B = Γ−1(I − G)

or alternatively

Γ = diag(B)−1

G = I − ΓB .

2.3 1-D Gaussian Markov Random Fields (GMRF)

An important special case occurs when the number of observations needed to
determine the MMSE non-causal predictor is limited to a window of n ± P

about the point being predicted. In order to simplify notation, we defined
the window

∂n = {i ∈ [1, · · · , N ] : i 6= n and |i − n| ≤ P} ,

so that ∂n is a set containing P neighbors on either side of n, except on the
boundary, where it is truncated.

Using this new notation, a 1-D Gaussian Markov random field (GMRF)
is any Gaussian random process with the property that

E[Xn|Xi for i 6= n] = E[Xn|Xi for i ∈ ∂n] .

In words, the MMSE non-causal predictor for any pixel in an GMRF is only
dependent on the pixel’s neighbors. Figure 2.2 illustrates the structure of the
prediction window for a 1-D GMRF of order P .
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The GMRF is a bit like an AR process, but the causal predictor of the
AR process is replaced with a non-causal predictor in the GMRF. For the
most general case of a zero-mean GMRF, the non-causal predictor then has
the form

En = Xn −
∑

i∈∂n

an,iXi .

We should note that the terminology “1-D random field” is clearly an
oxymoron, since the term “random field” refers to a 2-D object. Later we
will see that the concept of a Markov random field (MRF) grew out of the
study of 2 or more dimensional objects, were they are most useful, but the
concept applies perfectly well to 1-D also.

In order to reduce the number of model parameters, it is often useful to
assume that the prediction coefficients are not a function of position, n. This
results in the following new definition.

Definition: A GMRF is said to be homogeneous if both the MMSE
non-causal predictor and MMSE prediction variance are invariant to
position.

The MMSE non-causal predictor for a homogeneous GMRF then has the
form

En = Xn −
∑

i∈∂n

gn−iXi ,

with the non-causal prediction variance, σ2
NC , taking on a constant value. In

this case, we can write the density function for the homogeneous GMRF as

p(x) =
1

(2π)N/2
|B|1/2 exp

{

−1

2
xtBx

}

,

where

Bi,j =
1

σ2
NC

(δi−j − gi−j) .

Since we know that B must be a symmetric matrix, this implies that gn = g−n

must be a symmetric filter.

Once again, if we again extend Xn so that n = −∞, · · · ,−1, 0, 1, · · · ,∞,
then we can express the relation between Xn and the non-causal prediction
errors, En, using convolution.

En = Xn ∗ (δn − gn) (2.2)
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and

Xn = En +
∑

i∈∂n

gn−iXi .

Using this expression, we can compute the cross-correlation between En and
Xn as

E[EnXn] = E



En



En +
∑

i∈∂n

gn−iXi









= E
[

E2
n

]

+
∑

i∈∂n

gn−iE[EnXi]

= E
[

E2
n

]

+ 0 = σ2
NC .

By combining this result with Property 2.1, we get the following expression
for the cross-correlation between the prediction error and Xn.

E[EnXn+k] = σ2
NCδk .

This result just indicates that the prediction errors are independent of the
values used in the prediction. Using this fact, we have that

σ2
NCδk = E[EnXn+k]

= E





En





En+k +
∑

i∈∂(n+k)

gn+k−iXi













= E[EnEn+k] +
∑

i∈∂(n+k)

gn+k−iE[EnXi]

= RE(k) +
∑

i∈∂(n+k)

gn+k−iσ
2
NCδi−n

= RE(k) + σ2
NCgk .

Rearranging terms results in

RE(n) = σ2
NC (δn − gn) , (2.3)

where RE(n) is the time autocorrelation of the non-causal prediction errors.
So from this we see that, in general, the noncausal prediction errors are not
white. From equation (2.2), we know that autocorrelation functions of En

and Xn must be related by

RE(n) = RX(n) ∗ (δn − gn) ∗ (δn − g−n) . (2.4)
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Equating the expressions of (2.3) and (2.4) and using the fact that gn is a
symmetric function of n then yields an important expression for the time
autocorrelation of Xn.

RX(n) ∗ (δn − gn) = σ2
NCδn . (2.5)

From (2.3) and (2.5), we can compute the power spectral density of the
non-causal prediction errors.

SE(ω) = σ2
NC (1 − G(ω)) ,

where G(ω) is the DTFT of gn, and the power spectral density of the homo-
geneous GMRF process is given by

SX(ω) =
σ2

NC

1 − G(ω)
.

2.4 2-D Gaussian Markov Random Fields (GMRF)

In fact, all of the derivations of this section are easily generalized to regular
grids in 2 or more dimensions. To do this, each lattice point is represented by
s = (s1, s2), where s is a vector index with each coordinate taking on values
in the range 1 to N . We denote the set of all lattice points as S = [1, · · · , N ]2.

To generalize the vector-matrix relationships, we can order the pixels of
the vector X in raster order so that

X = [X1,1, · · · , X1,N , X2,1, · · · , X2,N , · · · , XN,1, · · · , XN,N ]t ,

and E is order similarly. If the GMRF is homogeneous, then the 2-D non-
causal prediction error is again given by

Es = Xs −
∑

r∈∂s

gs−rXr ,

where ∂s is a set of neighbors in 2-D. Typically, this set is given by

∂s = {r = (r1, r2) : r 6= s and |r1 − s1| ≤ P and |r2 − s2| ≤ P} ,

where P defines a (2P +1)×(2P +1) window about the point being predicted.
Figure 2.2 illustrates the structure of this 2-D prediction window for an order
P GMRF.
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• • ⊗ • •

• • • • •
• • • • •
• • ⊗ • •
• • • • •
• • • • •

1-D GMRF order P = 2 2-D GMRF order P = 2

Figure 2.2: Structure of 1-D and 2-D GMRF prediction window for an order P = 2
models. The pixel denoted by the symbol ⊗ is predicted using the past values denoted
by the symbol •. For the 1-D case, 2P = 4 past and future values are used by the
predictor, and for the 2-D case, (2P + 1)2 − 1 = 24 values are used by the predictor.

Again, the prediction errors can be expressed in matrix form as

E = (I − G)X ,

where G is the 2-D prediction matrix. As in the case of the 2-D AR model,
the matrix G is Toeplitz block Toeplitz.

The 2-D stationary GMRF also has properties quite similar to the 1-D
case. In fact, the results are formally identical, only with 1-D convolution
being replace by 2-D convolution and the 1-D DTFT being replaced by the
2-D DSFT. More specifically,

RE(s) = σ2
NC (δs − gs) (2.6)

RX(s) ∗ (δs − gs) = σ2
NCδs , (2.7)

where ∗ denotes 2-D convolution of 2-D functions. From this we can express
the 2-D power spectral density of both the homogeneous GMRF process and
its associated prediction errors.

SX(µ, ν) =
σ2

NC

1 − G(µ, ν)
. (2.8)

SE(µ, ν) = σ2
NC (1 − G(µ, ν)) (2.9)

where G(µ, ν) is the DSFT of gs.

2.5 Relation Between GMRF and Gaussian AR Mod-

els

An obvious question that arises at this point is which model is more general,
the AR or GMRF? In other words, is an AR model a GMRF, and visa-versa?
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1-D AR Model 1-D GMRF Model
Model
Parameters

σ2

C , hn σ2

NC , gn

Time Auto-
Correlation

RX(n) ∗ (δn − hn) ∗ (δn − h
−n) = σ2

Cδn RX(n) ∗ (δn − gn) = σ2

NCδn

Power
Spectrum

SX(ω) =
σ2

C

|1 − H(ω)|2 SX(ω) =
σ2

NC

1 − G(ω)

2-D AR Model 2-D GMRF Model
Model
Parameters

σ2

C , hs σ2

NC , gs

Space Auto-
Correlation

RX(s) ∗ (δs − hs) ∗ (δs − h
−s) = σ2

Cδs RX(s) ∗ (δs − gs) = σ2

NCδs

Power
Spectrum

SX(µ, ν) =
σ2

C

|1 − H(µ, ν)|2 SX(µ, ν) =
σ2

NC

1 − G(µ, ν)

Table 2.1: Auto-correlation and power spectrum relationships for 1-D and 2-D models.

In order to answer this question, we can relate the autocorrelation functions
and power spectrums for stationary AR and GMRF models. Table 2.1 sum-
marizes the important relationships from the previous chapter.

We know that if the autocorrelation of the stationary AR and GMRF pro-
cesses are the same, then they must have the same distribution. So equating
the expressions for RX(n) for the 1-D AR case and the 1-D GMRF case, we
find the following important relationship.

σ2
NC(δn − hn) ∗ (δn − h−n) = σ2

C(δn − gn) (2.10)

If we are given a specific AR process, we can use this expressions to compute
the parameters of the associated GMRF process. If we evaluated the equation
for n = 0, we get a general relationship between the causal and non-causal
prediction error.

σ2
NC =

σ2
C

1 +
∑P

n=1 h2
n

Using this relationship, we have that

gn = δn −
(δn − hn) ∗ (δn − h−n)

1 +
∑P

n=1 h2
n

.

So if we select an order P AR model, then the resulting GMRF is given by
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2−D GMRF: order 2P

1−D AR: order P
1−D GMRF:order PRandom Processes

Stationary

2−D GMRF: order P2−D AR: order P

Figure 2.3: Venn diagram illustrating the relationship between AR and GMRF models
in 1 and 2-D. Notice that in 1-D, AR and GMRF models are equivalent, but in 2-D
they are not.

the auto-correlation of the function δn−hn.
1 This auto-correlation operation

is shown graphically in Fig. 2.4. Notice, that in 1-D, and order P AR model
results in an order P GMRF. You should be able to convince yourself of this
by working out a simple case of P = 2.

In order to find the parameters of an AR model from the parameters of
a GMRF, it is necessary to find a causal predictor, hn, so that (2.10) holds
in either 1-D or 2-D. In the 1-D case, this is a classic problem that has been
solved for the case of Weiner filtering. Because gn is a symmetric function, it
is always possible to factor its rational Z-transform into a product of causal
and anti-causal parts. However, this result can not be generalized to 2-D
because polynomials in more than one dimension can not, in general, be
factored. This leads to the following result.

Property 2.2: Equivalence of AR and GMRF models in 1-D - A stationary
discrete time zero-mean Gaussian random process is a 1-D order P AR model
if and only if it is 1-D order P GMRF.

Interesting, this equivalence relationship does not hold in 2-D. First, Fig. 2.4
shows how a 2-D AR model of order P produces a 2-D GMRF of order 2P .
This is because the resulting 2-D convolution of the prediction filter produces
a asymmetric function which is 4P + 1 wide and 2P + 1 high. However, the
converse relationship simply no longer holds.

Property 2.3: In 2-D, an AR model of order P is a GMRF of order 2P

1The auto-correlation of a function fn is defined as fn ∗f
−n, i.e. the convolution with its time reverse.
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• • ⊗

• • ⊗
⇒ 1-D Auto-Correlation ⇒ • • ⊗ • •

1-D AR order P = 2 1-D GMRF order P = 2

• • • • •
• • • • •
• • ⊗

⇒ 2-D Auto-Correlation ⇒

• • • • • • •
• • • • • • • • •
• • • • ⊗ • • • •
• • • • • • • • •
• • • • • • •

2-D AR order P = 2 2-D GMRF order P = 2

Figure 2.4: Relationship between an AR model and the corresponding GMRF in
both 1-D and 2-D. In both 1-D and 2-D, the GMRF prediction window is produced
by the auto-correlation the AR filter. Notice that in 1-D, an order P AR model
produces an order P GMRF. However, in 2-D and order P AR model produces a
GMRF which requires an order of 2P . In each case, the pixels denoted by the symbol
⊗ are predicted using the values denoted by the symbol •.

- In 2-D, a stationary discrete time zero-mean order P AR model is also an
order 2P GMRF.

So from this we see that GMRFs are more general than AR models in 2-D,
but not in 1-D. This means that 2-D GMRFs can be used to model a broader
class of distributions, which is another major justification for their use.

Example 2.1: Consider a zero-mean stationary AR process with order P = 1,
and prediction filter

hn = ρδn−1 .

where |ρ| < 1, and prediction variance σ2
C .

From this AR model, we would like to calculate the parameters of an
equivalent GMRF. The non-causal prediction variance is given by

σ2
NC =

σ2
C

1 + ρ2
.

Notice, that this non-causal prediction variance is always smaller than the
causal prediction variance. The corresponding non-causal prediction filter is
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given by

gn = δn −
(δn − hn) ∗ (δn − h−n)

1 + ρ2

=
ρ

1 + ρ2
(δn−1 + δn+1) .

From this we can also calculate the power spectrum for both the AR and
GMRF processes as

SX(ω) =
σ2

C

|1 − H(ω)|2
=

σ2
C

|1 − ρe−jω|2

=
σ2

C

(1 + ρ2)

1
(

1 − 2ρ
1+ρ2 cos(ω)

) ,

or equivalently using the GMRF power spectrum

SX(ω) =
σ2

NC

1 − G(ω)
=

σ2
NC

1 − g1e−jω + g1ejω

=
σ2

NC

1 − 2g1 cos(ω)

=
σ2

C

(1 + ρ2)

1
(

1 − 2ρ
1+ρ2 cos(ω)

) .

This verifies that the two models result in the same power spectral density.

2.6 GMRF Models on General Lattices

Now that we have seen the GMRF in 1-D, we can take a slightly more abstract
approach and develop a general formulation of the GMRF which is applicable
to observations indexed on any lattice. To do this, we consider a random
process, Xs, indexed on a finite set of lattice points s ∈ S.

The neighbors of a pixel, s, are again denoted by ∂s, but we have made no
specific assumptions regarding the structure of S, or the neighbors of a pixel,
∂s. In fact, our specification of neighbors must only meet the two constraints
stated in the following definition.
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Definition: For each s ∈ S, let ∂s ⊂ S. Then we say that ∂s is a
neighborhood system if it meets two conditions. First, for all s ∈ S,
s 6∈ ∂s. Second, for all s, r ∈ S, if s ∈ ∂r, then r ∈ ∂s.

So for ∂s to be a legitimate neighborhood system, s can not be a neigh-
bor of itself, and if s is a neighbor of r, then r must be a neighbor of s.
Cliques are another very important concept that are very closely related to
neighborhoods.

Definition: An unordered pair of pixels {s, r} with s, r ∈ S is said to be
a pair-wise clique if s ∈ ∂r. We denote the set of all pair-wise cliques
as

P = { {s, r}|s, r ∈ S and s ∈ ∂r} .

Notice that by convention, the pixel pair {s, r} is unordered, so each unique
pair only appears once in the set P .

Using this concept of neighbors, we may give a formal definition for GMRFs.

Definition: Let Xs be a jointly Gaussian random process indexed on
s ∈ S. Then we say that X is a Gaussian Markov random field
(GMRF) with neighborhood system ∂s, if for all s ∈ S

E[Xs|Xr for r 6= s] = E[Xs|Xr for r ∈ ∂s] .

So a GMRF is a Gaussian random process Xs such that the non-causal pre-
dictor is only dependent on neighboring values, Xr for r ∈ ∂s.

Using this new and somewhat more general formulation, we can restate
the results of Section 2.2 that relate the non-causal prediction parameters of a
zero-mean GMRF to the parameters of its density function. So the equations
of non-causal prediction become

Es = Xs −
∑

r∈∂s

gs,rXr

σ2
s = E

[

E2
s |Xr for r ∈ ∂s

]

or in vector-matrix form this is written as

E = (I − G)X

Γ = diag
(

E
[

EE t
])
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With this notation, we can define the following general property of zero-mean
GMRFs.

Property 2.4: Density of a zero-mean GMRF from non-causal prediction

parameters - The density function of a zero-mean Gaussian random process,
Xs for s ∈ S, with a non-causal prediction matrix G and positive define
non-causal prediction variance matrix, Γ, is given by

p(x) =
1

(2π)N/2
|B|1/2 exp

{

−1

2
xtBx

}

,

where the inverse covariance, B, is given by

B = Γ−1(I − G) ,

or equivalently, the non-causal prediction parameters are given by

Γ = diag(B)−1

G = I − ΓB .

The relationships of Property 2.2 can also be written more explicitly as

Bs,r =
1

σ2
s

(δs−r − gs,r)

σ2
s =

1

Bs,s

gs,r = δs−r − σ2
sBs,r .
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Chapter 2 Problems

1. Find the error in the proof of Property 1.3 when the predictor is assumed
to be non-causal, i.e. X̂i = E[Xk k 6= i].

2. Let Xn be a 1-D zero-mean Gaussian AR process with MMSE causal
predition filter given by hn = ρδn−1 and causal prediction variance σ2

c .

a) Calculate, SX(ω), the power spectral density of the random process.

b) Calculate, RX(n), the time auto-correlation of the random process.

c) Calculate (σ2
NC , gn) the noncausal prediction variance and the non-

causal prediction filter for the equivalent GMRF.

3. Let {Xn}5
n=1 be a zero-mean 1-D order 2 GMRF.

a) A friend tells you that the non-causal prediction variance for Xn is
σ2

n = n and non-causal prediction filter is gn = 1
4(δn−1 + δn+1). Is this

possible? If so, why? If not, why not?

b) If you know that

Bn,m =
√

nm

(

δn−m − 1

4
(δn−m−1 + δn−m+1)

)

,

then calculate the non-causal prediction variance σ2
n and the non-causal

prediction filter gm,n for X.

4. Let Xn be a zero-mean GMRF with prediction filter gn and prediction
variance σ2

NC . Can gn be any symmetric function? If not, what proper-
ties must gn have?

5. Let Xn be a 1-D Gaussian MRF with noncausal predictor gn. Prove that
∑

n gn < 1.

6. Let G(ω) be the DTFT of the non-causal prediction filter, gn, for a
homogeneous GMRF. Prove that G(ω) is real valued, with G(ω) ≤ 1.

7. Let Ym,n be a 2-D zero-mean wide sense stationary random process with
autocorrelation function R(k, l) = E[Ym,nYm+k,n+l].
a) Show that ∀k, l, R(k, l) = R(−k,−l)
b) Give an example of a random process for which it is false that ∀k, l,
R(k, l) = R(−k, l). (Hint this is equivalent to ∃k, l, R(k, l) 6= R(−k, l).)
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8. Let Ys be a 2-D Gaussian AR process indexed by s = (s1, s2) where
s1 is the column index and s2 is the row index. Let the MMSE causal
prediction filter be given by

hs = ρδs1−1,s2
+ ρδs1,s2−1

and the causal prediction variance be given by σ2
C . Compute (σ2

NC , gs)
the noncausal prediction variance and the noncausal prediction filter.
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