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Chapter 1

Discrete Valued Markov Random
Fields

A serious disadvantage of Markov chain structures is that they lead to image
models that are not isotropic. This is due to the fact that one must choose a
1-D ordering of the pixels. In fact for most applications, there is no natural
1-D ordering for the pixels in a plane.

Markov random fields (MRF) have been introduced as a class of image
models that do not require a 1-D ordering of the image pixels, and therefore
can produce more natural and isotropic image models. However, as we will
see the disadvantage of MRF models is that problems such as parameter
estimation can be much more difficult due to the intractable nature of the
required normalizing constant. The key theorem required to work around
this limitation is the Hammersley-Clifford Theorem which will be presented
in detail. The following sections explain the theory and methods associated
with discrete valued MRFs.

1.1 Definition of MRF and Gibbs Distributions

Before we can define an MRF, we must first define the concept of a neigh-
borhood system. Let S be a set of lattice points with elements s ∈ S. Then
we use the notation ∂s to denote the neighbors of s. Notice that ∂s is a
subset of S, so the function ∂ is a mapping from S to the power set of S, or
equivalently the set of all subsets of S denoted by 2S.

However, not any mapping ∂s qualifies as a neighborhood system. In order
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Figure 1.1: An eight point a) neighborhood system, and b) its associated cliques.

for ∂s to be a neighborhood system, it must meet the following symmetry
constraint.

Definition 1 Neighborhood system
Let S be a set of lattice of points, then any mapping ∂ : S → 2S is a neigh-
borhood system if for all s, r ∈ S

r ∈ ∂s ⇒ s ∈ ∂r and s 6∈ ∂s

In other words, if r is a neighbor of s, then s must be a neighbor of r;
and it addition, s may not be a neighbor of itself. Notice that this definition
is not restricted to a regular lattice. However, if the lattice S is a regular
lattice, and the neighborhood is spatially invariant, then symmetry constraint
necessitates that the neighbors of a point must be symmetrically distributed
about each pixel. Figure 1.1a) shows such a symmetric 8-point neighborhood.

We may now give a general definition for MRFs.

Definition 2 Discrete(Continuous) Markov Random Field
Let Xs ∈ Ω be a discrete(continuous) valued random field defined on the lattice
S with neighborhood system ∂s. Further assume that the X has probability
mass(density) function p(x). Then we say that X is a Markov random field
(MRF) if its density function has the property that for all x ∈ Ω

p(xs|xr for r 6= s) = p(xs|x∂r) .

Notice that each pixel is only dependent on its neighbors.
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A limitation of MRFs is that their definition does not yield a natural
method for writing down the MRF’s distribution. For this purpose, we will
need to introduce the Gibbs distribution. We start by defining the concept of
cliques which will be an integral part of the structure of Gibbs distributions.

Definition 3 Clique
Given a lattice S and neighborhood system ∂s, a clique is any set of lattice
points c ⊂ S such at for all s, r ∈ c, r ∈ ∂s.

Cliques are sets of point which are all neighbors of one another. Examples of
cliques for an eight point neighborhood system on a rectangular are illustrated
in Figure 1.1b) With this definition of cliques, we may now define the concept
of a Gibbs distribution.

Definition 4 Discrete (Continuous) Gibbs Distribution
Let p(x) be the probability mass(density) function of a discrete(continuous)
valued random field Xs ∈ Ω defined on the lattice S with neighborhood system
∂s. Then we say that p(x) is a Gibbs distribution if it can be written in the
form

p(x) =
1

Z
exp







−
∑

c∈C

Vc(xc)







where Z is a normalizing constant known as the partition function, C is
the set of all cliques, xc is the vector containing values of x on the set c, and
Vc(xc) is any functions of xc.

We sometimes refer to the function Vc(xc) as a potential function and the
function

U(x) =
∑

c∈C

Vc(xc)

as the energy function.

The important result that relates MRFs and Gibbs distributions is the
Hammersley-Clifford Theorem[1] stated below.

Theorem 1 Hammersley-Clifford Theorem
Let S be an N point lattice with neighborhood system ∂s, and X be a dis-
crete(continuously) valued MRF on S with strictly positive probability mass(density)
function p(x) > 0. Then X is an MRF if and only if p(x) is a Gibbs distri-
bution.
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1.2 1-D MRFs and Markov Chains

1.3 The Ising Model and

1.4 Simulation

1.4.1 The Gibbs Sampler

In this section, we introduce the Gibbs sampler first presented in [2]. The
Gibbs sample is a general method for producing samples from a distribu-
tion. It is particularly useful when the distribution being sampled is a Gibbs
distribution, and the resulting samples form a Markov random field.

Let Xs be a finite dimensional random field that takes on values in a
discrete and finite set Ω for all s ∈ S. If we assume that that the distribution
of X is strictly positive, then without loss of generality, we know that the
distribution of X can be written in the form

p(x) =
1

z
exp{−u(x)} (1.1)

where u(x) is a real valued function. In fact, it is always possible to choose
the neighbors of each pixel so that ∂s = S. In this case, the entire lattice S

forms a clique, (1.1) is then a Gibbs distribution, and X is an MRF with a
degenerate neighborhood system. In any case, the marginal distribution of a
pixel can be written as

p (xs|xi i 6= s) =
exp{−u (xs|xi i 6= s)}

∑

x′

s
∈Ω

exp{−u (x′
s|xi i 6= s)}

(1.2)

We can generate samples from the distribution of (1.1) by using the following
Gibbs sampler algorithm.
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Gibbs Sampler Algorithm:

1. Set N = # of pixels

2. Order the N pixels as N = s(0), · · · , s(N − 1)

3. Repeat for k = 0 to ∞

(a) Form X(k+1) from X(k) via

X(k+1)
r =







W if r = s(k)

X(k)
r if r 6= s(k)

where W ∼ p
(

xs(k)

∣

∣

∣

∣

X
(k)
i i 6= s(k)

)

We next show that the Gibbs sampler converges to the distribution of
(1.1).

Theorem 2 Stationary Distribution of Gibbs Sampler
Let p(x) be strictly positive distribution on ΩN where Ω is a discrete and finite
set. Then the Gibbs Sampler Algorithm converges to a stationary distribution
with

p(x) = lim
k→∞

P{X(k) = x} .

Let X have a strictly positive distribution

Notice that in the special case that Pi,j > 0 for all i, j ∈ Ω, then the
Markov chain is guaranteed to be both irreducible and aperiodic. This leads
to the following useful corollary.

Theorem 3 Limit Theorem 1 for Markov Chains Let Xn be a discrete-state
discrete-time homogeneous Markov chain such that

• Ω is a finite set

• Pi,j > 0 for all i, j ∈ Ω

Then exists a unique stationary distribution
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Chapter 1 Problems

1. Let {Xn}
N
n=1 be a 1D discrete valued MRF with neighborhood system

∂n = {n − 1, n + 1} ∩ {1, . . . , N}

and strictly positive distribution. Prove that {Xn}
N
n=1 is also a Markov

Chain.

2. Let X be a binary valued 2-D random field with N ×N points. Assume
that for 0 < i, j < N − 1

P{X(0,j) = 0} = P{X(i,0) = 0} =
1

2

and for

P{X(i,j) = x(i,j)|Xr = xr r < (i, j)}

= g(x(i,j)|x(i−1,j), x(i,j−1))

=
1

3
δ(x(i,j), x(i−1,j)) +

1

3
δ(x(i,j), x(i,j−1)) +

1

6

a) Compute the complete density function for X.

b) Show that X is a MRF. Give the cliques and and neighborhood for
X.

3. Let f : IRN → IR be a continuous convex function which is differentable
every where and has a unique global minima. Let x ∈ {0, 1}N be a
binary valued vector with N components. We would like to compute

x̂ = arg min
x∈{0,1}N

f(x) .

a) Is the minimum unique? Prove your answer or give a counter example.

b) Does the Gauss-Seidel/Coordinate search method converge to a global
minimum? Prove your answer or give a counter example.
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